• 제목/요약/키워드: surface coal mine

검색결과 52건 처리시간 0.034초

금산(錦山) 대성탄철지성(大成炭鐵地城) 산성폐수(酸性廢水)에 의한 오염(汚染) (Pollution by Acid Mine Drainages from the Daeseong Coal Mine in Keumsan)

  • 송석환;민일식;김명희;이현구
    • 자원환경지질
    • /
    • 제30권2호
    • /
    • pp.105-116
    • /
    • 1997
  • This study is for extent of polluted area by acid mine drainage from the Daeseong coal mine, Keumsan. Black shales of the Changri Formation containing the Daeseong coal mine are geochemically similar to those from the North America as well as Europe. Comparing with geochemical compositions and relative ratios, coal bearing and non-coal bearing soils are similar to the stream sediments influenced and not influnced by the acid mine drainage, respectively. These characteristics suggest that acidification of the soils and of the stream sediments are related to the the coal bearing black shale. Soil waters beneath the coal bearing soil have low pH and high cation contents than those beneath non-coal bearing soil, suggestive of extractions of cations with increasing oxidizations within the soils. Surface waters show that those influenced by the acid mine drainage are low pH, and have high $SO_4{^{2-}}$, $Mg^{2+}$, $Fe^{2+}$, Mn and slightly lower DO, suggesting that heavy pollutions have been progressed in these area. Geochemical comparisons between the polluted surface water and adjacent black shales suggest that pollutions of the surface water are related to the black shales.

  • PDF

부산석회를 활용한 휴ㆍ폐 석탄광산 폐기물의 안정화 및 식생복원 (Reclamation of the Closed/Abandoned Coal Mine Overburden Using Lime wastes from Soda Ash Production)

  • 김휘중;양재의;옥용식;유경열;박병길;이재영;전상호
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.37-47
    • /
    • 2004
  • In Korea, over three hundreds of the coal mines were closed or abandoned due to the depression of the mining industry since the late 1980s. Many of them locate in the steep mountain valleys and the coal mine wastes had been disposed without a proper treatment From these mines, enormous amounts of coal mine overburdens have been abandoned in the slopes and the ample amounts of acid mine drainage (AMD) from either portal or overburdens have been discharging directly to the streams, causing the detrimental effects on soil and water qualities. Objectives of this research were to reclaim the coal mine overburdens using the lime waste cake from the soda ash production by stabilizing the overburden slopes, introducing the vegetation alleviate the environmental problems caused by the closed coal mines. The percentages of the grass distribution ratio (%) and the surface coverage ($\textrm{cm}^2$) in each treatment plot were determined during June to August after seed spraying grasses such as orchard grass (Dactylis glomerata L), Kentucky Bluegrass (Poa pratensis L.) and Eulalia (Miscanthus sinensis Anderss) at the end of May. The grasses covered only 15.5 % of the coal overburden plot at the early stage but the coverage was increased with time to 33% in August. Growth of such grasses was enhanced with the combined treatments of lime waste and topsoil resulting in the increased surface coverage by the grasses. The Increment of the surface coverage from June to August was higher with lime waste treatments. The distribution percentages and surface coverage were highest when the lime wastes were treated at 25 % of the lime requirement. This might be related with the high salt contents in the hire wastes. Results demonstrated that the amounts of lime wastes at 25% of the lime requirement were sufficient for neutralizing the acidic coal overburden and introducing the re-vegetation. Either layering between the coal waste and topsoil or mixing with coal overburdens could be adopted as the lime waste treatment method. The combined treatment of lime wastes and topsoil was recommended for re-vegetation in the coal overburden slopes. The lime wastes from the soda ash production might have a potential to be recycled for the reclamation of the abandoned coal mines to alleviate the environmental problems associated with coal mine waste.

  • PDF

Guided wave formation in coal mines and associated effects to buildings

  • Uyar, Guzin G.;Babayigit, Ezel
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.923-937
    • /
    • 2016
  • The common prospect in diminishing mine-blast vibration is decreasing vibration with increasing distance. This paper indicates that, contrary to the general expectancy, vibration waves change their forms when they are travelling through the low velocity layer like coal and so-called guided waves moving the vibration waves to longer distances without decreasing their amplitudes. The reason for this unexpected vibration increase is the formation of guided waves in the coal bed which has low density and low seismic velocity with respect to the neighboring layers. The amplitudes of these guided waves, that are capable of traveling long distances depending on the seam thickness, are several times higher than that of the usual vibration waves. This phenomenon can many complaints from the residential areas very far away from the blasting sites. Thus, this unexpected behavior of the coal beds in the surface coal mines should also be considered in vibration minimization studies. This study developed a model to predict the effects of guided waves on the propagation ways of blast-induced vibrations. Therefore, vibration mitigation studies considering the nearby buildings can be focused on these target places.

파시르 탄광에서의 채탄발파공법에 대한 문제점 분석 및 개선방안 연구 (A Study on the Improvement of Surface Blasting Method in Pasir Coal Mine)

  • 최병희;류동우;선우춘
    • 화약ㆍ발파
    • /
    • 제24권1호
    • /
    • pp.57-62
    • /
    • 2006
  • 인도네시아 파시르 탄광에서는 전형적으로 일자유면 발파방법이 사용되고 있다. 일자유면 발파방법은 지표면을 유일한 자유면으로 한 발파법이므로 구속이 커서 화약의 에너지가 저항선의 파괴보다는 지반진동의 유발에 더 많이 소모된다 따라서 파시르 탄광에서 현재 적용되는 일자유면 발파방법은 노천광산에서 일반적으로 적용되는 이자유면 발파인 계단발파에 비해 더 큰 지반진동을 유발시킬 수 있다. 더욱이 파시르 탄광의 경우 노천채굴적의 양안이 연약사면으로 이루어져 있어 발파진동은 이들 사면들의 안정성에 큰 영향을 미칠 수 있다. 발파진동과는 별도로 일자유면 발파는 본래 저항선이 하나뿐이므로 암반파괴의 측면에서도 발파효율이 좋지 않다. 따라서 파시르 탄광이 안고 있는 현안문제를 해결할 목적으로 진동제어와 발파효율을 동시에 향상시킬 수 있는 새로운 발파공법에 대한 연구가 착수되었다. 이 연구의 일환으로 파시르 탄광에서의 현행 발파공 법과 광산개발에 대한 현장조사가 수행되었으며 / 본 논문에서는 현장조사 과정에서 얻어진 결과들 가운데 향후 새로운 발파공법으로의 전환과정에서 반드시 준수되어야 할 공법설계의 지침을 제시하였다.

발전회를 이용한 광산환경 복원사례 연구 (A Case Study of Mine Environmental Restoration using Coal Ash)

  • 유종찬;지상우;안지환;김춘식;신희영
    • 자원리싸이클링
    • /
    • 제26권2호
    • /
    • pp.80-88
    • /
    • 2017
  • 전 세계적으로 매년 증가하는 발전회의 매립을 위한 부지는 현저히 부족한 실정이며, 이를 재활용 하는 방안에 관한 연구는 지금까지 활발히 진행 중이다. 또한, 휴 폐광산의 갱구, 폐석 더미, 지하공동에서 발생하는 다양한 광해는 심각한 인명피해 및 환경오염을 일으킨다. 따라서 본 연구에서는 국내 석탄, 금속, 석회석 광산에서 발생하는 AMD (Acid Mine Drainage), 지반침하 등의 광해방지에서 발전회의 활용 가능성에 대한 연구를 수행하였다. 발전회는 그 물리화학적인 특성에 따라 AMD 중화, 노천광산에서의 차폐재, 지하광산의 채움재 및 토양 개량제로써 활용할 수 있으며, 미국, 호주, 일본, 캐나다 등의 국외에서는 관련 지침을 마련하여 현장 적용사례가 충분히 확보된 상태이다. 하지만 국내의 경우 현장 적용을 위한 몇몇 연구들은 수행돼 왔지만, 현재 발전회를 사업장폐기물로 분류하고 있기 때문에 현장 적용사례가 미흡하며, 이와 관련된 연구도 부족한 실정이다. 따라서 국내에서도 국외의 관련 선행 적용사례들을 참고하여 광해방지사업에서 발전회의 활용을 위한 구체적인 기준 및 관리체계가 필요할 것이다.

국내폐탄광의 산성폐수 오염도 평가에 관한 연구 (A Study on the Assessment of the Contamination by Acid Mine Drainage in Abandoned Coal Mines)

  • 최우진
    • 한국토양환경학회지
    • /
    • 제2권3호
    • /
    • pp.31-38
    • /
    • 1997
  • 산성폐수에 함유된 오염물질의 물리적 화학적 특성이 배우 복잡하기 때문에 산성폐수에 의해 오염된 지표수나 지하수등의 오염정도를 지역적, 시간적 변화에 따라 비교하는 일은 쉽지가 않다. 본 논문에서는 산성폐수에 의해 오염된 지표수나 지하수의 오염도를 정량적으로 평가할 수 있는 수학적 지표를 제시하였으며, 오염지표를 이용하여 국내 폐탄광의 갱내 유출수에 대한 오염도를 검토하였다. 사용된 오염지표(Acid Mine Drainage Index)는 수질의 오염정도를 가장 잘 나타낼수 있는 7개의 변수 즉, pH값, 황산염(Sulfate), 철, 망간, 알루미늄, 구리 및 아연 함량을 이용하여 계산하였다. 사용된 변수는 오염도에 미치는 상대적인 중요도를 감안하여 가중치를 사용하였으며 , pH값 및 황산염함량에 가장 높은 가중치를 부여하였다. 국내 폐광산에서 유출되는 산성폐수의 오염도 평가결과 경북 문경에 소재한 석봉탄광이 조사탄광중 상대적으로 오염도가 높았으며, 지역적으로 영동지역에 위치한 폐탄광의 갱내 유출수가 영서, 중부, 서부 및 남부에 위치한 폐탄광에 비해 오염도가 높게 나타났다.

  • PDF

Treatment of Abandoned Coal Mine Discharged Waters Using Lime Wastes

  • Park Joon-Hong;Kim Hee-Joung;Yang Jae-E.;Ok Yong-Sik;Lee Jai-Young;Jun Sang-Ho
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 INTERNATIONAL SYMPOSIUM ON SOIL & GROUNDWATER ENVIRONMENT
    • /
    • pp.59-61
    • /
    • 2005
  • In Korea, hundreds of abandoned and closed coal and metallic mines are present in the steep mountain valleys due to the depression of the mining industry since the late 1980s. From these mines, enormous amounts of coal waste were dumped on the slopes, which causes sedimentation and acid mine drainage (AMD) to be discharged directly into streams causing detrimental effects on soil and water environments. A limestone slurry by-product (lime cake) is produced from the Solvay process in manufacturing soda ash. It has very fine particles, low hydraulic conductivities ($10^{-8}{\sim}10^{-9}cm/sec$), high pH, high EC due to the presence of CaO, MgO and $CaCl_2$ as major components, and traces of heavy metals. Due to these properties, it has potential to be used as a neutralizer for acid-producing materials. A field plot experiment was used to test the application of lime cake for reclaiming coal wastes. Each plot was 20 x 5 m (L x W) in size on a 56% slope. Treatments included a control (waste only), calcite ($CaCO_3$), and lime cake. The lime requirement (LR) for the coal waste to pH 7.0 was determined and treatments consisted of adding 100%, 50%, and 25% of the LR. The lime cake and calcite were also applied in either a layer between the coal waste and topsoil or mixed into the topsoil and coal waste. Each plot was hydroseeded with grasses and planted with trees. In each plot, surface runoff and subsurface water were collected. The lime cake treatments increased the pH of coal waste from 3.5 to 6, and neutralized the pH of the runoff and leachate of the coal waste from 4.3 to 6.7.

  • PDF

Effects of chloride ion transport characteristics and water pressure on mechanical properties of cemented coal gangue-fly ash backfill

  • Dawei Yin;Zhibin Lu;Zongxu Li;Chun Wang;Xuelong Li;Hao Hu
    • Geomechanics and Engineering
    • /
    • 제38권2호
    • /
    • pp.125-137
    • /
    • 2024
  • In paste backfill mining, cemented coal gangue-fly ash backfill (CGFB) can effectively utilize coal-based solid waste, such as gangue, to control surface subsidence. However, given the pressurized water accumulation environment in goafs, CGFB is subject to coupling effects from water pressure and chloride ions. Therefore, studying the influence of pressurized water on the chlorine salt erosion of CGFB to ensure green mining safety is important. In this study, CGFB samples were soaked in a chloride salt solution at different pressures (0, 0.5, 1.5, and 3.0 MPa) to investigate the chloride ion transport characteristics, hydration products, micromorphology, pore characteristics, and mechanical properties of CGFB. Water pressure was found to promote chloride ion transfer to the CGFB interior and the material hydration reaction; enhance the internal CGFB pore structure, penetration depth, and chloride ion content; and fill the pores between the material to reduce its porosity. Furthermore, the CGFB peak uniaxial compression strain gradually decreased with increasing soaking pressure, whereas the uniaxial compressive strength first increased and then decreased. The resulting effects on the stability of the CGFB solid-phase hydration products can change the overall CGFB mechanical properties. These findings are significant for further improving the adaptability of CGFB for coal mine engineering.

지속가능 에너지 패러다임 변화속에서 석탄의 활용 (Usage of Coal in the Paradigm Shift toward Sustainable Energy)

  • 박제현;양인재;이진수;이청룡
    • 자원환경지질
    • /
    • 제53권6호
    • /
    • pp.793-807
    • /
    • 2020
  • 그린뉴딜정책의 실현은 석탄을 연료에서 원료로 활용분야로의 전환을 촉진시킬 것이다. 석탄은 수소의 생산, 인조 흑연 및 활성탄의 제조 원료로 활용될 수 있다. 석탄은 Steam carbon(SC) 반응과 Water-Gas Shift(WGS) 반응 및 탄산화 반응을 통하여 수소를 생산할 수 있으며, CO2격리기술과 연동되어 사용되어야 한다. 인조흑연은 실리콘이나 철 등의 무기촉매의 존재하에서 탄화도가 높은 무연탄 등을 2400~2800℃의 흑연화 온도까지 열처리함으로서 제조될 수 있기 때문에 무연탄은 석유계 피치에 비해 원료 가격경쟁력 측면에서 잠재성이 있다. 한편, 최근 목질기원의 활성탄에 필적하는 넓은 비표면적 혹은 많은 양의 미세기공을 가진 석탄기원의 활성탄이 제조될 수 있음을 여러 연구를 통해 확인되었다. 따라서 석탄기원의 활성탄은 목질기원의 활성탄을 대체할 수 있을 것으로 기대된다.

A caving self-stabilization bearing structure of advancing cutting roof for gob-side entry retaining with hard roof stratum

  • Yang, Hongyun;Liu, Yanbao;Cao, Shugang;Pan, Ruikai;Wang, Hui;Li, Yong;Luo, Feng
    • Geomechanics and Engineering
    • /
    • 제21권1호
    • /
    • pp.23-33
    • /
    • 2020
  • An advancing cutting roof for gob-side entry retaining with no-pillar mining under specific geological conditions is more conducive to the safe and efficient production in a coalmine. This method is being promoted for use in a large number of coalmines because it has many advantages compared to the retaining method with an artificial filling wall as the gateway side filling body. In order to observe the inner structure of the gateway cutting roof and understand its stability mechanism, an equivalent material simulation experiment for a coalmine with complex geological conditions was carried out in this study. The results show that a "self-stabilization bearing structure" equilibrium model was found after the cutting roof caving when the cut line deviation angle was unequal to zero and the cut height was greater than the mining height, and the caving roof rock was hard without damage. The model showed that its stability was mainly controlled by two key blocks. Furthermore, in order to determine the optimal parameters of the cut height and the cut line deviation angle for the cutting roof of the retaining gateway, an in-depth analysis with theoretical mechanics and mine rock mechanics of the model was performed, and the relationship between the roof balance control force and the cut height and cut line deviation angle was solved. It was found that the selection of the values of the cut height and the cut line deviation angle had to conform to a certain principle that it should not only utilize the support force provided by the coal wall and the contact surface of the two key blocks but also prevent the failure of the coal wall and the contact surface.