DOI QR코드

DOI QR Code

Usage of Coal in the Paradigm Shift toward Sustainable Energy

지속가능 에너지 패러다임 변화속에서 석탄의 활용

  • Received : 2020.09.10
  • Accepted : 2020.12.01
  • Published : 2020.12.28

Abstract

The policy for Green New Deal will promote the shift of the application to coal as feedstock from coal as fuel. Coal can be used as fuel for production of hydrogen and as feedstock materials such as synthetic graphite or activated carbon. Hydrogen is obtained from syngas produced through Steam carbon(SC), Water-Gas Shift(WGS), and Carbonation reactions, and these processes should be used in conjunction with CO2 sequestration technology. Anthracite has a potential in terms of cost advantage as a feedstock compared to a petroleum pitch, because Synthetic graphite is prepared by heat treating an anthracite with high rank to a graphitization temperature which is in the range of 2400~2800℃, in the presence of inorganic catalyst such as silicon or iron. From several studies, it has been confirmed that coal-based activated carbon(AC) is manufactured with quality similar to the large specific surface area and much micropore volume of lignin-based AC, can be prepared. Therefore it is expected that lignin-based AC is replaced to coal-based AC.

그린뉴딜정책의 실현은 석탄을 연료에서 원료로 활용분야로의 전환을 촉진시킬 것이다. 석탄은 수소의 생산, 인조 흑연 및 활성탄의 제조 원료로 활용될 수 있다. 석탄은 Steam carbon(SC) 반응과 Water-Gas Shift(WGS) 반응 및 탄산화 반응을 통하여 수소를 생산할 수 있으며, CO2격리기술과 연동되어 사용되어야 한다. 인조흑연은 실리콘이나 철 등의 무기촉매의 존재하에서 탄화도가 높은 무연탄 등을 2400~2800℃의 흑연화 온도까지 열처리함으로서 제조될 수 있기 때문에 무연탄은 석유계 피치에 비해 원료 가격경쟁력 측면에서 잠재성이 있다. 한편, 최근 목질기원의 활성탄에 필적하는 넓은 비표면적 혹은 많은 양의 미세기공을 가진 석탄기원의 활성탄이 제조될 수 있음을 여러 연구를 통해 확인되었다. 따라서 석탄기원의 활성탄은 목질기원의 활성탄을 대체할 수 있을 것으로 기대된다.

Keywords

References

  1. Ahmad, T., Park J.M., Choi S.A. and Lee S.S. (2018) Characteristics of carbon dioxide adsorption with the physical property of activated carbon. Clean Technology, v.24, p.287-292. https://doi.org/10.7464/KSCT.2018.24.4.287
  2. Amstaetter, K., Eek, E. and Cornelissen, G. (2012) Sorption of PAHs and PCBs to activated carbon: Coal versus biomass-based quality. Chemosphere, v.87, p.573-578. https://doi.org/10.1016/j.chemosphere.2012.01.007
  3. Andrus, H.E., Burns, G., Chiu, J.H., Liljedahl, G.N., Stromberg, P.T., Thibeault, P.R. and Jain, S.C. (2005) ALSTOM's hybrid combustion-gasification chemical looping power technology development. Proc. 22nd Annual International Pittsburgh Coal Conference, Pittsburgh, Pennsylvania, USA.
  4. Andrus, H.E., Burns, G., Chiu, J.H., Liljedahl, G.N., Stromberg, P.T. and Thibeault, P.R. (2008) Hybrid combustion-gasification chemical looping power technology development. ALSTOM Technical Report, U.S. Department of Energy National Energy technology Laboratory, Pittsburgh, Pennsylvania, No. DE-FC26-03NT41866.
  5. Atria, J.V., Rusinko, F. and Schobert, H.H. (2002) Structural ordering of pennsylvania anthracites on heat treatment to 2000-2900℃. Energ. Fuel., v.16, p.1343-1347. https://doi.org/10.1021/ef010295h
  6. Baraniecki, C., Pinchbeck, P.H. and Pickering, F.B. (1969) Some aspects of graphitization induced by iron and ferro-silicon additions. Carbon, v.7, p.213-224. https://doi.org/10.1016/0008-6223(69)90104-3
  7. Biscoe, J. and Warren, B.E. (1942) An X-ray study of carbon black. J. Appl. Phys., v.13, p.364-371. https://doi.org/10.1063/1.1714879
  8. Blanche, C., Rouzaud, J.N. and Dumas, D. (1995) Carbon '95: 22nd Biennial Conference on Carbon: Extended Abstracts; American Carbon Society: San Diego, CA, p.694.
  9. Boobar, M. (1954) Effect of thermal treatment on the mineral constituents and crystallographic structure of anthracite. PhD thesis in Fuel Technology, Pennsylvania State Univ., University Park, p.45-89.
  10. Braun, T.J., Sloan, D.G., Turek, D.G., Unker, S.A. and Vitse, F. (2017) ALSTOM's Limestone chemical looping gasification process for high hydrogen syngas generation. U.S. DOE/NETL Cooperative Agreement No. DE-FE0023497., U.S. Department of Energy National Energy Technology Laboratory Pittsburgh, Pennsylvania.
  11. Brusset, H. (1949) The Graphitation; La graphitization. Bull. Soc. Chim. France.
  12. Cabielles, M., Montes-Moran, M.A. and Garcia, A.B. (2008) Structural study of graphite materials prepared by HTT of unburned carbon concentrates from coal combustion fly ashes. Energ. Fuel., v.22, p.1239-1243. https://doi.org/10.1021/ef700603t
  13. Camean, I., Lavela, P., Tirado, J.L. and Garcia, A.B. (2010) On the electrochemical performance of anthracitebased graphite materials as anodes in lithium-ion batteries. Fuel, v.89, p.986-991. https://doi.org/10.1016/j.fuel.2009.06.034
  14. Camean, I. and Garcia A.B. (2011) Graphite materials prepared by HTT of unburned carbon from coal combustion fly ashes: Performance as anodes in lithium-ion batteries. J. Power Sources, v.196, p.4816-4820. https://doi.org/10.1016/j.jpowsour.2011.01.041
  15. DACO (2014) Trend of market and technology development for graphene and nanomaterial. DACO Industrial Research Market Report 2014-04, 32p.
  16. Deurbergue, A., Oberlin, A., Oh, J. and Rouzaud, J. (1987) Graphitization of Korean anthracites as studied by transmission electron microscopy and X-ray diffraction. Int. J. Coal Geol., v.8, p.375-393. https://doi.org/10.1016/0166-5162(87)90074-7
  17. Dobbyn, R.C., Ondik, H.M., Willard, W.A., Brower, W.S., Feinberg, I.J., Hahn, T.A., Hicho, G.E., Read, M.E., Robbins, C.R. and Smith. J.H. (1979) Evaluation of the performance of materials and components used in the CO2 acceptor process gasification pilot plant. U.S. Department of Energy Report No. DE85013673.
  18. Feng, G., Jiangying, Q., Zongbin, Z., Quan, Z. and Beibei, L. (2014) A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application. Carbon, v.80, p.640-650. https://doi.org/10.1016/j.carbon.2014.09.008
  19. Ferreras, J.F., Blanco, C., Pajares, J.A., Mahamud, M. and Pis, J.J. (1993) A Combined FTIR and Textural Study of the Oxidation of a Bituminous Coal. Spectrosc. Lett., v.26, p.897-912. https://doi.org/10.1080/00387019308011580
  20. Franklin, R.E. (1951) Crystallite growth in graphitizing and non-graphitizing carbons. P. Roy. Soc. A-Math. Phy., v.209, p.196-218.
  21. Gao, L., Paterson, N., Dugwell, D. and Kandiyoti, R. (2008) The Zero-emission carbon concept (ZECA): Equipment commissioning and extents of the reaction with hydrogen and steam. Energ. Fuel., v.22, p.463-470. https://doi.org/10.1021/ef700534m
  22. Gnesin, G.G. (2015) Carbon in inorganic materials: From charcoal to graphene. Powder Metall. Met. C+, v.54, p.241-251. https://doi.org/10.1007/s11106-015-9706-7
  23. Gonzalez, D., Montes-Moran, M.A. and Garcia, A.B. (2003) Graphite Materials Prepared from an Anthracite:A Structural Characterization. Energ. Fuel., v.17, p.1324-1329. https://doi.org/10.1021/ef0300491
  24. Harris, L.A. and Yust, C.S. (1976) Transmission electron microscope observation of porosity in coal. Fuel v.55, p.233-236. https://doi.org/10.1016/0016-2361(76)90094-6
  25. Hassler, J.W. (1974) Purification with activated carbon; Industrial, Commercial, Environmental. Chemical Pub. Co. Inc., New York.
  26. Huang, S., Guo, H., Li, X., Wang, Z., Gan, L., Wang, J. and Xiao, W. (2013) Carbonization and graphitization of pitch applied for anode materials of high power lithium ion batteries. J. Solid State Electr., v.17, p.1401-1408. https://doi.org/10.1007/s10008-013-2003-9
  27. Jeremy R. (2020) The Global Green New Deal (Korean translation edition). Minumsa, 60p.
  28. Jibril, B.Y., Al-Maamari, R.S., Hegde, G., Al-Mandhary, N. and Houache, O. (2007) Effects of feedstock pre-drying on carbonization of KOH-mixed bituminous coal in preparation of activated carbon. J. Anal. Appl. Pyrol., v.80, p.277-282. https://doi.org/10.1016/j.jaap.2007.03.003
  29. Joseph V.A., Frank R.Jr. and Harold H.S. (2002) Structural ordering of pennsylvania anthracites on heat treatment to 2000-2900℃. Energy & Fuels, v.16, p.1343-1347. https://doi.org/10.1021/ef010295h
  30. Kanniche, M. and Bouallou, C. (2007) CO2 capture study in advanced integrated gasification combined cycle. Appl. Therm. Eng., vol.27, p.2693-2702. https://doi.org/10.1016/j.applthermaleng.2007.04.007
  31. Kim B.J., Kim J.S., Kim H., Lim J.S. and Choi Y.C. (2019) Industrial status and technology prospect of activated carbon. Korean Evaluation Institute of Industrial Technology (KEIT) PD Issue Report, v.19-12, p.109-127.
  32. Li, W.G., Gong, X.J., Wang, K., Zhang, X.R. and Fan, W.B. (2014) Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon. Bioresour. Technol., v.165, p.166-173. https://doi.org/10.1016/j.biortech.2014.02.069
  33. Li, Z., Hu, C., Yu, C., Adams, H. and Qiu, J. (2010) Preparation and mechanical properties of highly-aligned carbon micro-trees. Carbon, v.48, p.1926-1931. https://doi.org/10.1016/j.carbon.2010.01.059
  34. Lin, S., Harada, M., Suzuki, Y. and Hatano, H. (2005) Process analysis for hydrogen production by reaction integrated novel gasification (HyPr-RING). Energ. Convers. Manage., v.46, p.869-880. https://doi.org/10.1016/j.enconman.2004.06.008
  35. Liu, T., Luo, R., Yoon, S.H. and Mochida, I. (2010) Anode performance of boron-doped graphites prepared from shot and sponge cokes. J. Power Sources, v.195, p.1714-1719. https://doi.org/10.1016/j.jpowsour.2009.08.104
  36. Marsh, H. and Neavel, R.C. (1980) Carbonization and liquid-crystal(mesophase) development. 15. A common stage in mechanisms of coal liquifaction and of coal blends for coke making. Fuel, v.59, p.511-513. https://doi.org/10.1016/0016-2361(80)90179-9
  37. Min, Z., Jiawei, Y., Haixia, W., Wenzhuo, S., Jiali, Z., Chenglong, Y., Li, L., Qiaoe, H., Feng, G., Yafei, T., Ye, H. and Shouwu, G. (2020) Multilayer graphene spheres generated from anthracite and semi-coke as anode materials for lithium-ion batteries. Fuel Proc. Tech., v.198, 106241. https://doi.org/10.1016/j.fuproc.2019.106241
  38. Nawaz, M. and Ruby, J. (2001). Zero emission coal alliance project conceptual design and economics. Proc. 26th International Technical Conference on Coal Utilization and Fuel Systems, The Clearwater Conference, Florida, USA.
  39. Newell, J.A., Edie, D.D. and Fuller Jr, E.L. (2015) Kinetics of carbonization and graphitization of PBO fiber. J. Appl. Polym., v.60, p.825-832.
  40. Noda, T., Sumiyoshi, Y. and Ito, N. (1968) Growth of single crystals of graphite from a carbon-iron melt. Carbon, v.6, p.813-816. https://doi.org/10.1016/0008-6223(68)90067-5
  41. Oberlin, A. and Rouchy, J.P. (1971) Transformation des carbones non graphitables par traitement thermique en presence de fer. Carbon, v.9, p.39-46. https://doi.org/10.1016/0008-6223(71)90142-4
  42. Oberlin, A. and Terriere, G. (1975) Graphization studies of anthracites by high resolution electron microscopy. Carbon, v.13, p.367-376. https://doi.org/10.1016/0008-6223(75)90004-4
  43. Pappano, P.J. (2003) A mechanism of Pennsylvania anthracite graphitization involving carbide formation and decomposition. Ph.D. Thesis in Energy and Geo-Environmental Engineering, The Pennsylvania State University, University Park, USA, 27p.
  44. Parra, J.B., Pis, J.J., De Sousa, J.C., Pajares, J.A. and Bansal, R.C. (1996) Effect of coal preoxidation on the development of microporosity in activated carbons. Carbon, v.34, p.783-787. https://doi.org/10.1016/0008-6223(96)00030-9
  45. Piotr, B., Tomasz, C., Leszek, C. and Magdalena, G.G. (2016) Carbon footprint of the hydrogen production process utilizing subbituminous coal and lignite gasification. J. Cleaner Production, v.139, p.858-865. https://doi.org/10.1016/j.jclepro.2016.08.112
  46. Pis, J.J., Cagigas, A., Simon, P. and Lorenzana, J.J. (1988) Effect of aerial oxidation of coking coals on the technological properties of the resulting cokes. Fuel Process. Technol., v.20, p.307-316. https://doi.org/10.1016/0378-3820(88)90029-X
  47. Py, X., Daguerre, E. and Menard, D. (2002) Composites of expanded natural graphite and in situ prepared activated carbon. Carbon, v.40, p.1255-1265. https://doi.org/10.1016/S0008-6223(01)00285-8
  48. Qiu, J., Li, Y., Wang, Y., Wang, T. and Zhao, Z. (2003) High-purity single-wall carbon nanotubes synthesized from coal by arc discharge. Carbon, v.41, p.2170-2173. https://doi.org/10.1016/S0008-6223(03)00242-2
  49. Rizeq, G., Lyon, R.K., Zamansky, V.M. and Das, K. (2001) Fuel-flexible AGC technology for production of H2, power, and sequestration-ready CO2. Proc. 26th International Technical Conference on Coal Utilization and Fuel Systems, The Clearwater Conference, Florida, USA.
  50. Rizeq, G., West, J., R., Frydman Subia, R., Zamansky, V., Wiltowski, T., Miles, T. and Springsteen B. (2001) Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration- Ready CO2. Quarterly Technical Progress Report No. 5, DOE Award No. DE-FC26-00FT40974.
  51. Rizeq G., West, J., Frydman, A., Subia, R., Zamansky, V., Wiltowski, T., Miles, T., and Springsteen, B. (2002) Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2. Annual Technical Progress Report, U.S. Department of Energy, Washington D. C., No. DE-FC26-00FT40974.
  52. Rodrigues, S., Suarez-Ruiz, I., Marques, M. and Flores, D. (2012) Catalytic role of mineral matter in structural transformation of anthracites during high temperature treatment. Int. J. Coal Geol., v.93, p.49-55. https://doi.org/10.1016/j.coal.2012.01.012
  53. Saliger, R., Fischer, U., Herta, C. and Fricke, J. (1998) High surface area carbon aerogel for supercapacitors. J. Non-Cryst. Solids, v.225, p.81-85. https://doi.org/10.1016/S0022-3093(98)00104-5
  54. Schobert, H.H. (1990) The Chemistry of Hydrocarbon Fuels. Butterworth-Heinemann, Boston, 120p.
  55. Schwartz, A.S. and Bokros, J.C. (1967) Catalytic graphitization of carbon by titanium. Carbon, v.5, p.325-330. https://doi.org/10.1016/0008-6223(67)90048-6
  56. Slowi ski, G. (2006) Some technical issues of zeroemission coal technology. Int. J. Hydrogen Energ., v.31, p.1091-1102. https://doi.org/10.1016/j.ijhydene.2005.08.012
  57. Song, G., Deng, R., Yao, Z., Chen, H., Romero, C., Lowe, T., Driscoll, G., Kreglow, B., Schobert, H. and Baltrusaitis, J. (2020) Anthracite coal-based activated carbon for elemental Hg adsorption in simulated flue gas: Preparation and evaluation. Fuel, v.275, p.117921. https://doi.org/10.1016/j.fuel.2020.117921
  58. Stavropoulos, G.G. (2005) Precursor materials suitability for super activated carbons production. Fuel Process. Technol., v.86, p.1165-1173. https://doi.org/10.1016/j.fuproc.2004.11.011
  59. Sun, J., Hippo, E.J., Marsh, H., O'Brien, W.S. and Crelling, J.C. (1997) Activated carbon produced from an Illinois basin coal. Carbon, v.35, p.341-351. https://doi.org/10.1016/S0008-6223(96)00157-1
  60. Tao W., Yongbang W., Guo C., Cheng M., Xiaojun L., Jitong W., Wenming Q. and Licheng L. (2020) Catalytic graphitization of anthracite as an anode for lithium-ion batteries. Energy Fuels, v.34, p.8911-8918. https://doi.org/10.1021/acs.energyfuels.0c00995
  61. Tim, T. (2019) Japan and australia launch an experimental coal to hydrogen expert industry, Forbes.com/sites/timtreadgold/2019/07/24/Japan-and-australia-launch-an-experimental-coal-to-hydrogen-expert-industry/
  62. Yamashita, Y. and Ouchi, K. (1982) Influence of alkali on the carbonization process-I: Carbonization of 3,5-dimethylphenol-formaldehyde resin with NaOH. Carbon, v.20, p.41-45. https://doi.org/10.1016/0008-6223(82)90072-0
  63. Yang, Y., Pang, Y., Liu, Y. and Guo H. (2018) Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form-stable phase change material for indoor energy saving. Mater. Lett., v.216, p.220-223. https://doi.org/10.1016/j.matlet.2018.01.025
  64. Yeh, T.S., Wu, Y.S. and Lee, Y.H. (2011) Graphitization of unburned carbon from oil-fired fly ash applied for anode materials of high power lithium ion batteries. Mater. Chem. Phys., v.130, p.309-315. https://doi.org/10.1016/j.matchemphys.2011.06.045
  65. Yokogawa, C, Hosokawa, K. and Takegami, Y. (1966) Low temperature catalytic graphitization of hard carbon. Carbon, v.4, p.459-465. https://doi.org/10.1016/0008-6223(66)90060-1
  66. Yun, Y.S., Im, C., Park, H.H., Hwang, I., Tak, Y. and Jin, H.J. (2013) Hierarchically porous carbon nanofibers containing numerous heteroatoms for supercapacitors. J. Power Sources, v.234, p.285-291. https://doi.org/10.1016/j.jpowsour.2013.01.169
  67. Zhao, H., Wang, L., Jia, D., Xia, W., Li, J. and Guo, Z. (2014) Coal based activated carbon nanofibers prepared by electrospinning. J. Mater. Chem. A, v.2, p.9338-9344. https://doi.org/10.1039/c4ta00069b
  68. Zhewei Y., Yang Y., Huajun G., Zhixing W., Xinhai L., Yu Z. and Jiexi W. (2018) Compact structured silicon/carbon composites as high-performance anodes for lithium ion batteries. Ionics, v.24, p.3405-3411. https://doi.org/10.1007/s11581-018-2486-6
  69. Zhou, Y., Wang, Y., Chen, H. and Zhou, L. (2005) Methane storage in wet activated carbon: Studies on the charging/discharging process. Carbon, v.43, p.2007-2012. https://doi.org/10.1016/j.carbon.2005.03.017
  70. Ziock, H.J., Lackner, K.S. and Harrison, D.P. (2001) Zero emission coal power, a new concept (No. LA-UR-01-2214). Los Alamos National Lab., NM (US).
  71. Zou, Y. and Han, B.X. (2001) High-surface-area activated carbon from chinese coal. Energ. Fuel., v.15, p.1383-1386. https://doi.org/10.1021/ef0002851