• 제목/요약/키워드: surface assisted growth

검색결과 85건 처리시간 0.028초

Patterned Arrays of Well-Ordered ZnO Nanorods Assisted with Polystyrene Monolayer By Oxygen Plasma Treatment

  • Choi, Hyun Ji;Lee, Yong-Min;Lee, Yulhee;Seo, Hyeon Jin;Hwang, Ki-Hwan;Kim, Dong In;Yu, Jung-Hoon;Kim, Jee Yun;Nam, Sang Hun;Boo, Jin-Hyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.146-146
    • /
    • 2016
  • Zinc Oxide (ZnO) was known as a promising material for surface acoustic wave devices, gas sensors, optical devices and solar cells due to piezoelectric material, large band gap of 3.37 eV and large exciton binding energy of 60 meV at room temperature. In particular, the alignment of ZnO nanostructures into ordered nanoarrays can bring about improved sensitivity of devices due to widen the surface area to catch a lot of gas particle. Oxygen plasma treatment is used to specify the nucleation site of round patterned ZnO nanorods growth. Therefore ZnO nanorods were grown on a quartz substrate with patterned polystyrene monolayer by hydrothermal method after oxygen plasma treatment. And then, we carried out nanostructures by adjusting the diameter of the arranged ZnO nanorods according to polystyrene spheres of various sizes. The obtained ZnO nanostructures was characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM).

  • PDF

OBSERV ATION OF MICRO-STRUCTURE AND OPTICAL PROPERTISE OF TITANIUM DIOXIDE THIN FILMS USING OPTICAL MMEHODS

  • Kim, S.Y.;Kim, H.J.
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.788-796
    • /
    • 1996
  • $TiO_2$ films prepared by RF magnetron sputtering, electron beam evaporation, ion assisted deposition (IAD) and sol-gel method are prepared on c-Si substrate and vitreous silica substrate respectively. From the transmission spectra of $TiO_2$ films on vitreous silica substrate in the spectral region from 190 nm to 900 nm, k($\lambda$) of $TiO_2$ is obtained. Using k($\lambda$) in the interband transition region the coefficients of the quantum mechanical dispersion relation of an amorphous $TiO_2$ and hence n($\lambda$) including the optically opaque region of above fundamental transition energy are obtained. The spectroscopic ellipsometry spectra of $TiO_2$ films in the spectral region of 1.5-5.0eV are model analyzed to get the film packing density variation versus i) substrate material, ii) film thickness and iii) film growth technique. The complex refractive index change of these $TiO_2$ films versus water condensation is also studied. Film micro-structures by SE modelling results are compared with those by atomic force microscopy images and X-ray diffraction data.

  • PDF

Pulsed Magnet ron Sputtering Deposit ion of DLC Films Part II : High-voltage Bias-assisted Deposition

  • Chun, Hui-Gon;Lee, Jing-Hyuk;You, Yong-Zoo;Ko, Yong-Duek;Cho, Tong-Yul;Nikolay S. Sochugov
    • 한국표면공학회지
    • /
    • 제36권2호
    • /
    • pp.148-154
    • /
    • 2003
  • Short ($\tau$=40 $mutextrm{s}$) and high-voltage ($U_{sub}$=2~8 kV) negative substrate bias pulses were used to assist pulsed magnetron sputtering DLC films deposition. Space- and time-resolved probe measurements of the plasma characteristics have been performed. It was shown that in case of high-voltage substrate bias spatial non-uniformity of the magnetron discharge plasma density greatly affected DLC deposition process. By Raman spectroscopy it was found that maximum percentage of s $p^3$-bonded carbon atoms (40 ~ 50%) in the coating was attained at energy $E_{c}$ ~700 eV per deposited carbon atom. Despite rather low diamond-like phase content these coatings are characterized by good adhesion due to ion mixing promoted by high acceleration voltage. Short duration of the bias pulses is also important to prevent electric breakdowns of insulating DLC film during its growth.wth.

HF 크리닝 처리한 코발트실리사이드 버퍼층 위에 PA-MBE로 성장시킨 GaN의 에피택시 (GaN Epitaxy with PA-MBE on HF Cleaned Cobalt-silicide Buffer Layer)

  • 하준석;장지호;송오성
    • 한국산학기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.409-413
    • /
    • 2010
  • 실리콘 기판에 GaN 에피성장을 확인하기 위해, P형 Si(100) 기판 전면에 버퍼층으로 10 nm 두께의 코발트실리사이드를 형성시켰다. 형성된 코발트실리사이드 층을 HF로 크리닝하고, PA-MBE (plasma assisted-molecular beam epitaxy)를 써서 저온에서 500 nm의 GaN를 성막하였다. 완성된 GaN은 광학현미경, 주사탐침현미경, TEM, HR-XRD를 활용하여 특성을 확인하였다. HF 크리닝을 하지 않은 경우에는 GaN 에피택시 성장이 진행되지 않았다. HF 크리닝을 실시한 경우에는 실리사이드 표면의 국부적인 에칭에 의해 GaN성장이 유리하여 모두 GaN $4\;{\mu}m$ 정도의 두께를 가진 에피택시 성장이 진행되었다. XRD로 GaN의 <0002> 방향의 결정성 (crsytallinity)을 $\omega$-scan으로 판단한 결과 Si(100) 기판의 경우 2.7도를 보여 기존의 사파이어 기판 정도로 우수할 가능성이 있었다. 나노급 코발트실리사이드를 버퍼로 채용하여 GaN의 에피성장이 가능할 수 있었다.

자기제한적 표면반응에 의한 ZnO 박막성장 및 기판온도에 따른 박막특성 (Self-Limiting Growth of ZnO Thin Films and Substrate-Temperature Effects on Film Properties)

  • 이두형;권새롬;이석관;노승정
    • 한국진공학회지
    • /
    • 제18권4호
    • /
    • pp.296-301
    • /
    • 2009
  • ZnO에 대한 박막증착 연구를 위하여 유도결합 플라즈마 원자층박막증착(inductively coupled plasma assisted atomic layer deposition: ICP-ALD) 장치를 제작하고, 장치에 대한 기본 공정조건을 설정하기 위하여 플라즈마를 유도하지 않은 상태에서 p-type Si(100) 기판 위에 ZnO 박막을 증착하는 다양한 실험을 수행하였다. Zn 전구체(precursor)로는 Diethyl zinc [$Zn(C_2H_5)_2$, DEZn]를, 반응가스(reaction gas)로는 $H_2O$를, 캐리어(carrier) 및 퍼지가스(purge gas)로는 Ar을 사용하였다. 기판온도 $150^{\circ}C$에서 DEZn, $H_2O$, Ar의 공급시간을 변화시켜가면서 자기제한적 표면반응(self-limiting surface reaction)에 의한 박막성장조건을 성공적으로 유도하였다. 기판온도를 변화시켜가면서($90{\sim}210^{\circ}C$) 증착실험을 반복하여, 본 장치에 대한 ALD 공정온도(thermal ALD process window)를 확립하고 성장된 ZnO박막에 대한 증착특성, 결정성, 불순물 및 내부조성비등을 조사하였다. ALD 공정온도는 기판온도 $110{\sim}190^{\circ}C$로써 이 구간에서의 박막 평균증착률은 0.29 nm/cycle로 일정하게 나타났다. 기판온도가 높아질수록 결정성이 향상되어 ZnO(002) 피크가 우세하였다. 모든 ALD 공정온도에서 Zn와 O로만 구성된 고순도의 ZnO 박막을 실현하였는데, 온도가 높아질수록 Zn와 O의 비가 1에 근접하며 안정된 hexagonal wurtzite ZnO 구조의 박막이 성장되었다.

Exploration of growth mechanism for layer controllable graphene on copper

  • Song, Woo-Seok;Kim, Yoo-Seok;Kim, Soo-Youn;Kim, Sung-Hwan;Jung, Dae-Sung;Jun, Woo-Sung;Jeon, Cheol-Ho;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.490-490
    • /
    • 2011
  • Graphene, hexagonal network of carbon atoms forming a one-atom thick planar sheet, has been emerged as a fascinating material for future nanoelectronics. Huge attention has been captured by its extraordinary electronic properties, such as bipolar conductance, half integer quantum Hall effect at room temperature, ballistic transport over ${\sim}0.4{\mu}m$ length and extremely high carrier mobility at room temperature. Several approaches have been developed to produce graphene, such as micromechanical cleavage of highly ordered pyrolytic graphite using adhesive tape, chemical reduction of exfoliated graphite oxide, epitaxial growth of graphene on SiC and single crystalline metal substrate, and chemical vapor deposition (CVD) synthesis. In particular, direct synthesis of graphene using metal catalytic substrate in CVD process provides a new way to large-scale production of graphene film for realization of graphene-based electronics. In this method, metal catalytic substrates including Ni and Cu have been used for CVD synthesis of graphene. There are two proposed mechanism of graphene synthesis: carbon diffusion and precipitation for graphene synthesized on Ni, and surface adsorption for graphene synthesized on Cu, namely, self-limiting growth mechanism, which can be divided by difference of carbon solubility of the metals. Here we present that large area, uniform, and layer controllable graphene synthesized on Cu catalytic substrate is achieved by acetylene-assisted CVD. The number of graphene layer can be simply controlled by adjusting acetylene injection time, verified by Raman spectroscopy. Structural features and full details of mechanism for the growth of layer controllable graphene on Cu were systematically explored by transmission electron microscopy, atomic force microscopy, and secondary ion mass spectroscopy.

  • PDF

ION BEAM AND ITS APPLICATIONS

  • Koh, S.K.;Choi, S.C.;Kim, K.H.;Cho, J.S.;Choi, W.K.;Yoon, Y.S.;Jung, H.J.
    • 한국진공학회지
    • /
    • 제6권S1호
    • /
    • pp.110-114
    • /
    • 1997
  • Development of metal ion source growth of high quality Cu metal film formation of non-stoichiometric $SnO_2$ films of Si(100), and modification fo polymer surface by low enregy ion beam have been carried out at KIST Ion Beam Lab. A new metal ion source with high ion beam flux has been developed by a hybrid ion beam (HIB) deposition and non-stoichiometric $SnO_2$ films are controlled by supplying energy. The ion assisted reaction (IAR) in which keV ion beam is irradiated in reactive gas environment has been deveolped for modifying the polymers and enhancing adhesion to other materials and advantages of the IAR have been reviewed.

  • PDF

PAALD 방법을 이용한 TaN 박막의 구리확산방지막 특성 (Characteristics of TaN Film as to Cu Barrier by PAALD Method)

  • 부성은;정우철;배남진;권용범;박세종;이정희
    • 반도체디스플레이기술학회지
    • /
    • 제2권2호
    • /
    • pp.5-8
    • /
    • 2003
  • In this study, as Cu diffusion barrier, tantalum nitrides were successfully deposited on Si(100) substrate and $SiO_2$ by plasma assisted atomic layer deposition(PAALD) and thermal ALD, using pentakis (ethylmethlyamino) tantalum (PEMAT) and NH$_3$ as precursors. The TaN films were deposited at $250^{\circ}C$ by both method. The growth rates of TaN films were 0.8${\AA}$/cycle for PAALD and 0.75${\AA}$/cycle for thermal ALD. TaN films by PAALD showed good surface morphology and excellent step coverage for the trench with an aspect ratio of h/w -1.8:0.12 mm but TaN films by thermal ALD showed bad step coverage for the same trench. The density for PAALD TaN was 11g/cmand one for thermal ALD TaN was 8.3g/$cm^3$. TaN films had 3 atomic % carbon impurity and 4 atomic % oxygen impurity for PAALD and 12 atomic % carbon impurity and 9 atomic % oxygen impurity for thermal ALD. The barrier failure for Cu(200 nm)/TaN(10 nm)/$SiO_2$(85 nm)/ Si structure was shown at temperature above $700^{\circ}C$ by XRD, Cu etch pit analysis.

  • PDF

PAALD 방법을 이용한 TaN 박막의 구리확산방지막 특성

  • 부성은;정우철;배남진;권용범;박세종;이정희
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2002년도 추계학술대회 발표 논문집
    • /
    • pp.14-19
    • /
    • 2002
  • In this study, as Cu diffusion barrier, tantalum nitrides were successfully deposited on Si(100) substrate and SiO2 by plasma assisted atomic layer deposition(PAALD) and thermal ALD, using pentakis (ethylmethlyamino) tantalum (PEMAT) and $NH_3$ as precursors. The TaN films were deposited on $250^{\circ}$C by both method. The growth rates of TaN films were $0.8{\AA}$/cycle for PAALD and $0.75{\AA}$/cycle for thermal ALD. TaN films by PAALD showed good surface morphology and excellent step coverage for the trench with an aspect ratio of h/w - $1.8 : 0.12 \mu\textrm{m}$ but TaN films by thermal ALD showed bad step coverage for the same trench. The density for PAALD TaN was $11g/\textrm{cm}^3$ and one for thermal ALD TaN was $8.3g/\textrm{cm}^3$. TaN films had 3 atomic % carbon impurity and 4 atomic % oxygen impurity for PAALD and 12 atomic % carbon impurity and 9 atomic % oxygen impurity for thermal ALD. The barrier failure for Cu(200nm)/TaN(l0nm)/$SiO_2(85nm)$/Si structure was shown at temperature above $700^{\circ}$C by XRD, Cu etch pit analysis.

  • PDF

Biocompatibility of Nanoscale Hydroxyapatite-embedded Chitosan Films

  • Sun, Fangfang;Koh, Kwangnak;Ryu, Su-Chak;Han, Dong-Wook;Lee, Jaebeom
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.3950-3956
    • /
    • 2012
  • In order to improve the bioactivity and mechanical properties of hydroxyapatite (HAp), chitosan (Chi) was in situ combined into HAp to fabricate a composite scaffold by a sublimation-assisted compression method. A highly porous film with sufficient mechanical strength was prepared and the bioactivity was investigated by examining the apatite formed on the scaffolds incubated in simulated body fluid. In addition, the cytotoxicity of the HAp/Chi composite was studied by evaluating the viability of murine fibroblasts (L-929 cells) exposed to diluted extracts of the composite films. The apatite layer was assessed using scanning electronic microscopy, inductively coupled plasma-optical emission spectrometry and weight measurement. Composite analysis showed that a layer of micro-sized, needle-like crystals was formed on the surface of the composite film. Additionally, the WST-8 assay after L-929 cells were exposed to diluted extracts of the composite indicated that the HAp/Chi scaffold has good in vitro cytocompatibility. The results indicated that HAp/Chi composites with porous structure are promising scaffolding materials for bone-patch engineering because their porous morphology can provide an environment conductive to attachment and growth of osteoblasts and osteogenic cells.