• Title/Summary/Keyword: surface acts

Search Result 257, Processing Time 0.027 seconds

Analysis of Repeated Tensile Test Results Consisting of Composite Waterproof Methods (복합방수공법으로 구성된 반복인장시험 분석)

  • Kim, Byoungil;Oh, Sang-Keun;Song, Jae-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.41-42
    • /
    • 2023
  • Test results for a total of four types of complex waterproofing methods were analyzed. In the case of the A method, the stress generated by high-viscosity compounds adhering to the base test body during the behavior of the test body was transferred to the sheet surface layer. In the case of the B method and the C method, the properties of the waterproof sheet consisting of a non-hardened seal based and a non-hardened seal are well reflected and stress absorption in the non-hardened seal layer acts strongly, rapidly reducing stress transfer to the surface of the waterproof sheet. In the case of the D method, slip occurs due to repeated behavior, and the stress on the attachment surface is reduced, and the stress transfer to the surface is greatly reduced. As a result, four types of composite waterproofing methods resulted in changing the stress transfer mechanism caused by behavior on the concrete surface due to the physical properties of the internal constituent material of the waterproof sheet.

  • PDF

Evaluation of the Inhibitive Performance of Cyperus Conglomeratus Leaves Extract as a Green Corrosion Inhibitor on Mild Steel XC70 in Acid Medium

  • Belkis, Guessoum;Abdelkader, Hadj Seyd;Oumelkheir, Rahim
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.171-183
    • /
    • 2022
  • The performance and inhibitory action of the aqueous extract of Cyperus Conglomeratus's leaves against corrosion of XC70 steel in a 1M HCl acid medium are studied by the determination of the weight loss, the potentiodynamic polarization curves analysis, and electrochemical impedance measurements (electrochemical techniques). The corrosion inhibitory efficiency of XC70 steel increases with the increasing concentration of the green inhibitor, however, the corrosion rate of the steel decreases. Weight loss measurements show that the maximum percentage corrosion inhibition efficiency is approximately 61.86%, while the analysis of the mixed character polarization curves shows that the inhibitor could achieve an inhibition efficiency of 86.96%. The electrochemical impedance study confirmed that the value of the charge transfer resistance (Rct) increases and the value of the double layer capacity (Cdl) decreases with increasing concentration of the aqueous extract of Cyperus Conglomeratus's leaves, thus increasing the inhibition efficiency. The study showed that this aqueous extract acts by adsorption on the metal surface; this adsorption follows the Langmuir isotherm. This research work showed that Cyperus Conglomeratus leaves extract acts as an effective and eco-friendly inhibitor on mild steel in an acid medium.

Adhesion Characteristics of Semiconductive and Insulating Silicone Rubber by Oxygen Plasma Treatment (산소 플라즈마 처리에 의한 반도전-절연 실리콘 고무의 접착 특성)

  • Lee Ki- Taek;Huh Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.153-157
    • /
    • 2006
  • In this work, the effects of plasma treatment on surface properties of semiconductive silicone rubber were investigated in terms of X-ray photoelectron spectroscopy (XPS) and contact angles, The adhesion characteristics of semiconductive-insulating interface layer of silicone rubber were studied by measuring the T-peel strengths, The results of the chemical analysis showed that C-H bonds were broken due to plasma discharge and Silica-like bonds(SiOx, x=3${\~}$4) increased, It is thought that semiconductive silicone rubber surfaces treated with plasma discharge led to an increase in oxygen-containing functional groups, resulting in improving the degree of adhesion of the semiconductive-insulating interface layer of silicone rubber. However, the oxygen plama for 20 minute produces a damaged oxidized semiconductive silicone rubber layer, which acts as a weak layer producing a decrease in T-peel strength, These results are probably due to the modifications of surface functional groups or polar component of surface free energy of the semiconductive silicone rubber.

A Surface Adaptive Moving Mechanism for Wind Turbine Blade Maintenance Robot (풍력발전기 유지보수로봇을 위한 표면 적응 이동 시스템)

  • Kim, Byunggon;Park, Sora;Jun, Minsoek;Jun, Kyungtae;Hong, Daehie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.969-975
    • /
    • 2013
  • As energy shortage is getting more serious, wind energy source is more promoted around the world. Blade is a key component of wind turbine. Local breakages and/or contamination in the blade bring degradation in aerodynamic efficiency and life-time. However, it is not easy and even dangerous for human workers to access the blade for inspection and maintenance since its size is huge and located at high mountains and rough sea, which are windy places. This paper deals with a novel moving mechanism that efficiently carries human workers or robots to the wind turbine blade. The proposed mechanism utilizes flexible tube with pressurized air that rolls and climbs over the blade surface. So, the tube naturally adapts the changing surface of the blade and acts no harm to it. This paper discusses about its concept, detail design, and advantages. The feasibility of the proposed mechanism is proved through experiments prototype.

Unit Loads of Pollutants in a Paddy Fields Area with Large-Scaled Plots during Irrigation Seasons (관개기 대구획 광역논에서의 오염부하 원단위)

  • 오승영;김진수;김규성;김선종;윤춘경
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.136-147
    • /
    • 2002
  • Characteristics of unit loads of pollutants were investigated at a paddy fields area(Soro-ri) with large-scaled plots on loam soil during irrigation seasons of 1999 ∼2000. The average irrigation requirement of experimental paddy area are estimated at over 3,000 mm. The unit loads of pollutants in paddy fields area are determined by subtracting irrigation water load from outflow load (percolated and surface outflow loads). Surface outflow load in rainy days was calculated using the relationships of discharge and load, which are grouped into fertilizing and non-fertilizing periods. The ratios of the surface outflow load in rainy days to the total surface outflow load are 16.4% for T-N, 26.8% for T-P, and 23.3% far CODc,. The unit loads of pollutants show month-to-month and year-to-year variations, and monthly unit load of pollutants can show negative values, indicating that the paddy area acts as the pollutants sink. The average unit loads of the pollutants during irrigation seasons were estimated at 18.2 kg/ha fur T-N, 0.31 kg/ha for T-P, and 43.3 kg/ha for CODc,, which are smaller than the reported values for Kosei area in Japan.

An Optimization of Cast poly-Si solar cell using a PC1O Simulator (PC1D를 이용한 cast poly-Si 태양전지의 최적화)

  • Lee, Su-Eun;Lee, In;Ryu, Chang-Wan;Yi, Ju-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.553-556
    • /
    • 1999
  • This paper presents a proper condition to achieve above 19 % conversion efficiency using PC1D simulator. Cast poly-Si wafers with resistivity of 1 $\Omega$-cm and thickness of 250 ${\mu}{\textrm}{m}$ were used as a starting material. Various efficiency influencing parameters such as rear surface recombination velocity and minority carrier diffusion length in the base region, front surface recombination velocity, junction depth and doping concentration in the Emitter layer, BSF thickness and doping concentration were investigated. Optimized cell parameters were given as rear surface recombination of 1000 cm/s, minority carrier diffusion length in the base region 200 ${\mu}{\textrm}{m}$, front surface recombination velocity 100 cnt/s, sheet resistivity of emitter layer 100 $\Omega$/$\square$, BSF thickness 5 ${\mu}{\textrm}{m}$, doping concentration 5$\times$10$^{19}$ cm$^3$ . Among the investigated variables, we learn that a diffusion length of base layer acts as a key factor to achieve conversion efficiency higher than 19 %. Further details of simulation parameters and their effects to cell characteristics are discussed in this paper.

  • PDF

Performance variation of Nickel-Cobalt-Manganese lithium-ion battery by cathode surface coating materials (NCM 리튬 이온 배터리의 양극 표면 코팅물질에 따른 성능변화 )

  • JinUk Yoo;Sung Gyu Pyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.2
    • /
    • pp.57-70
    • /
    • 2024
  • Nickel-cobalt-manganese (NCM) lithium-ion batteries(LIBs) are increasingly prominent in the energy storage system due to their high energy density and cost-effectiveness. However, they face significant challenges, such as rapid capacity fading and structural instability during high-voltage operation cycles. Addressing these issues, numerous researchers have studied the enhancement of electrochemical performance through the coating of NCM cathode materials with substances like metal oxides, lithium composites, and polymers. Coating these cathode materials serves several critical functions: it acts as a protection barrier against electrolyte decomposition, mitigates the dissolution of transition metals, enhances the structural integrity of the electrode, and can even improve the ionic conductivity of the cathode. Ultimately, these improvements lead to better cycle stability, increased efficiency, and enhanced overall battery life, which are crucial for the advancement of NCM-based lithium-ion batteries in high-demand applications. So, this paper will review various cathode coating materials and examine the roles each plays in improving battery performance.

The atmospheric plasma reactor with water wall to decompose CF4

  • Itatani, Ryohei;Deguchi, Mikio;Toda, Toshihiko;Ban, Heitaro
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.391-394
    • /
    • 2001
  • A new type plasma reactor is proposed to decompose CF4 diluted with N2 gas in atmospheric pressure. The arc plasmas is surrounded with a waterwall which acts as a source of water vapor, the solvent of HF, resultant product after decomposition, and conveyer to take away fluorine compound from exhaust gas. Abatement more than 99% is achieved by small size plasmas such as 1 cm in diameter, 25cm in length and 3.4KW of DC discharge power in such gas as the mixture of 100 sccm of CF4 and 15 slm of N2. Reactors of this type are to be expanded to such a system as Nitrogen flow of 50 slm with 200 sccm of CF4 and 7-8 KW discharge power.

  • PDF

Finite Element Analysis of Hertzian Contact Problem (Hertz 접촉 문제의 유한 요소 해석)

  • Ko, Dong-sun;Kim, Hyung-Jong
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.81-88
    • /
    • 2008
  • Generally, Hertz theory is used to analyze the contact problem of two bodies. It is simple derivation of solution in the contact part. And calculation time is short Moreover, it can mean well that many wear occurs relatively. However, material property becomes plastic deformation when large perpendicular pressure acts on a small contact surface product. In this case, Hertz theory is inapplicable. Therefore this thesis carried the finite element analysis in consideration of material elasticitystrain and the shape of the geometric from contact point. And it compared with Hertz theory that change of the contact surface and contact pressure.

  • PDF

Interlamellar Silylation of Montmorillonite with 3-Aminopropyltriethoxysilane

  • Park, Kyeong-Won;Kwon, Oh-Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.965-968
    • /
    • 2004
  • H-montmorillonite was modified by interlayer surface silylation using 3-aminopropyltriethoxysilane and dodecylamine in ethanol without a pre-swelling step. Dodecylamine acts as a gallery expander and silylation catalyst. The evaporation of ethanol from the dispersion yields well-ordered silylated montmorillonites with large basal spacing between 1.50 and 4.20 nm. Solid-state $^29Si$ CP MAS NMR of the silylated samples showed $Q^2\;and\;Q^3$ signals as well as $T^2\;and\;T^3$ signals. The increase in the relative intensity of $Q^3\;for\;Q^2$ and the appearance of $T^2\;and\;T^3$ signals was attributed to the grafting of 3-aminopropyltriethoxysilane to the interlayer surface silanol groups.