• Title/Summary/Keyword: surface integral method

Search Result 294, Processing Time 0.026 seconds

A B-Spline Higher Order Panel Method Applied to the Radiation Wave Problem for a 2-D Body Oscillating on the Free Surface

  • Hong, D.C.;Lee, C.-S.
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.4
    • /
    • pp.1-14
    • /
    • 1999
  • The improved Green integral equation using the Kelvin-type Green function in known free of irregular frequencies where the integral over the inner free surface integral is removed from the integral equation, resulting in an overdetermined integral equation. The solution of the overdetermined Green integral equation is shown identical with the solution of the improved Green integral equation Using the B-spline higher order panel method, the overdetermined equation is discretized in two different ways; one of the resulting linear system is square and the other is redundant. Numerical experiments show that the solutions of both are identical. Using the present methods, the exact values and higher derivatives of the potential at any place over the wetted surface of the body can be found with much fewer panels than low order panel method.

  • PDF

The calculation of stress intensity factors by the surface integral method

  • Jin, Chi-Sub;Jang, Heui-Suk;Choi, Hyun-Tae
    • Structural Engineering and Mechanics
    • /
    • v.3 no.6
    • /
    • pp.541-553
    • /
    • 1995
  • The determination of the stress intensity factors is investigated by using the surface integral defined around the crack tip of the structure. In this work, the integral method is derived naturally from the standard path integral J. But the use of the surface integral is also extended to the case where body forces act. Computer program for obtaining the stress intensity factors $K_I$ and $K_{II}$ is developed, which prepares input variables from the result of the conventional finite element analysis. This paper provides a parabolic smooth curve function. By the use of the function and conventional element meshes in which the aspect ratio (element length at the crack tip/crack length) is about 25 percent, relatively accurate $K_I$ and K_{II}$ values can be obtained for the outer integral radius ranging from 1/3 to 1 of the crack length and for inner one zero.

Reference Stress Based J-Integral Estimates Along the Semi-Elliptical Surface Crack Front (반타원 표면균열 선단을 따른 참조응력 기반의 J-적분 예측)

  • Kim, Jin-Su;Shim, Do-Jun;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.701-708
    • /
    • 2004
  • This paper discusses applicability of the enhanced reference stress method to estimate J-integral along the semi-elliptical surface crack front. It is found that angular variations of normalized J­integral are strongly dependent on the geometry, loading mode and loading magnitude. As application of the reference stress approach to semi-elliptical surface cracks implies proportional increases in the normalized J-integral, the present results pose a question in applicability of the reference stress approach. However, investigation of the error in the estimated J-integral in the present work suggests that the enhanced reference stress approach, recently proposed by authors, provides an effective engineering tool fur estimating crack driving force along the semi-elliptical surface crack front.

The Development of Anti-Windup Scheme for Time Delay Control with Switching Action Using Integral Sliding Surface (적분형 슬라이딩 서피스를 이용한 TDCSA(Time Delay Control With Switching Action)의 와인드업 방지를 위한 기법의 개발)

  • Lee, Seong-Uk;Jang, Pyeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1534-1544
    • /
    • 2002
  • The TDCSA(Time Delay Control with Switching Action) method, which consists of Time Delay Control(TDC) and a switching action of sliding mode control(SMC), has been proposed as a promising technique in the robust control area, where the plant has unknown dynamics with parameter variations and substantial disturbances are preset. When TDCSA is applied to the plant with saturation nonlinearity, however, the so-called windup phenomena are observed to arise, causing excessive overshoot and instability. The integral element of TDCSA and the saturation element of a plant cause the windup phenomena. There are two integral effects in TDCSA. One is the integral effect occurred by time delay estimation of TDC. Other is the integral term of an integral sliding surface. In order to solve this problem, we have proposed an anti-windup scheme method for TDCSA. The stability of the overall system has been proved for a class of nonlinear system. Experiment results show that the proposed method overcomes the windup problem of the TDCSA.

An Improved Continuous Integral Variable Structure Systems with Prescribed Control Performance for Regulation Controls of Uncertain General Linear Systems (불확실 일반 선형 시스템의 레귤레이션 제어를 위한 사전 제어 성능을 갖는 개선된 연속 적분 가변구조 시스템)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1759-1771
    • /
    • 2017
  • In this paper, an improved continuous integral variable structure systems(ICIVSS) with the prescribed control performance is designed for simple regulation controls of uncertain general linear systems. An integral sliding surface with an integral state having a special initial condition is adopted for removing the reaching phase and predetermining the ideal sliding trajectory from a given initial state to the origin in the state space. The ideal sliding dynamics of the integral sliding surface is analytically obtained and the solution of the ideal sliding dynamics can predetermine the ideal sliding trajectory(integral sliding surface) from the given initial state to the origin. Provided that the value of the integral sliding surface is bounded by certain value by means of the continuous input, the norm of the state error to the ideal sliding trajectory is analyzed and obtained in Theorem 1. A corresponding discontinuous control input with the exponential stability is proposed to generate the perfect sliding mode on the every point of the pre-selected sliding surface. For practical applications, the discontinuity of the VSS control input is approximated to be continuous based on the proposed modified fixed boundary layer method. The bounded stability by the continuous input is investigated in Theorem 3. With combining the results of Theorem 1 and Theorem 3, as the prescribed control performance, the pre specification on the error to the ideal sliding trajectory is possible by means of the boundary layer continuous input with the integral sliding surface. The suggested algorithm with the continuous input can provide the effective method to increase the control accuracy within the boundary layer by means of the increase of the $G_1$ gain. Through an illustrative design example and simulation study, the usefulness of the main results is verified.

High-Order Spectral/Boundary-Integral Method for the Calculation of Nonlinear Interactions between Hydrofoil and Free-Surface (수중익과 자유표면의 비선형 상호작용 계산을 위한 고차 스펙트럴/경계적분법)

  • Kim Yong Jig;Ha Young Rok;Kwon Sun Hong;Kim Dong Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.369-372
    • /
    • 2002
  • Under the assumption of potential flow, free-surface flows around a 2-dimensional hydrofoil are calculated by high-order spoctral/boundary-integral method. This method is one of the most efficient numerical methods by which the nonlinear interactions between hydrofoil and free-surface can be simulated in time-domain. Comparisons of the calculated free-surface profiles with other experimental results show relatively good agreements. As another example, free-surface flow generated by the heaving and translating hydrofoil is calculated and discussed.

  • PDF

A more efficient numerical evaluation of the green function in finite water depth

  • Xie, Zhitian;Liu, Yujie;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.399-412
    • /
    • 2017
  • The Gauss-Legendre integral method is applied to numerically evaluate the Green function and its derivatives in finite water depth. In this method, the singular point of the function in the traditional integral equation can be avoided. Moreover, based on the improved Gauss-Laguerre integral method proposed in the previous research, a new methodology is developed through the Gauss-Legendre integral. Using this new methodology, the Green function with the field and source points near the water surface can be obtained, which is less mentioned in the previous research. The accuracy and efficiency of this new method is investigated. The numerical results using a Gauss-Legendre integral method show good agreements with other numerical results of direct calculations and series form in the far field. Furthermore, the cases with the field and source points near the water surface are also considered. Considering the computational efficiency, the method using the Gauss-Legendre integral proposed in this paper could obtain the accurate numerical results of the Green function and its derivatives in finite water depth and can be adopted in the near field.

Development of the Direct Boundary Element Method for Thin Bodies with General bBundary Conditions (일반 경계 조건을 가진 얇은 물체에 대한 직접 경계 요소법의 개발)

  • 이강덕;이덕주
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.975-984
    • /
    • 1997
  • A direct boundary element method (DBEM) is developed for thin bodies whose surfaces are rigid or compliant. The Helmholtz integral equation and its normal derivative integral equation are adoped simultaneously to calculate the pressure on both sides of the thin body, instead of the jump values across it, to account for the different surface conditions of each side. Unlike the usual assumption, the normal velocity is assumed to be discontinuous across the thin body. In this approach, only the neutral surface of the thin body has to be discretized. The method is validated by comparison with analytic and/or numerical results for acoustic scattering and radiation from several surface conditions of the thin body; the surfaces are rigid when stationary or vibrating, and part of the interior surface is lined with a sound-absoring material.

  • PDF

Development of 3-D J-Integral Calculation Method for Structural Integrity Evaluation (기기 건전성 평가를 위한 3차원 J-적분 계산 전산코드 응용평가 연구)

  • Kim, Young-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.450-454
    • /
    • 1999
  • In order to evaluate the integrity of nuclear power plants, J-integral calculation is crucial. For this purpose, finite element method is popularly used to obtain J-integral. However, high cost time consuming preprocess should be performed to design the finite element model of a cracked structure. Also, the J-integral should be verified by alternative method since it may differ depending on the calculation method. The objective of this paper is to develop a three-dimensional elastic-plastic J-integral analysis system which is named as EPAS. The EPAS program consists of an automatic mesh generator for a through-wall crack and a surface crack, a solver based on ABAQUS program, and a J-integral calculation program which provides DI(Domain Integral) and EDI(Equivalent Domain Integral) based J-integral calculation. Using the EPAS program, an optimized finite element model for a cracked structure can be generated and corresponding J-integral can be obtained subsequently.

  • PDF

Calculation of Nonlinear Interactions between Hydrofoil and Free-Surface by the High-Order Spectral/Boundary-Integral Method (고차 스펙트럴 / 경계적분법에 의한 수중익과 자유표면의 비선형 상호작용 계산)

  • 김용직;하영록
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.1
    • /
    • pp.27-32
    • /
    • 2003
  • Under the assumption of potential flow, free-surface flow around a hydrofoil is calculated by the high-order spectra1!boundary-integral method, This method is one of the most efficient numerical methods by which the nonlinear interactions between hydrofoil and free-surface can be simulated in time-domain. In this method. the wave potential which represents the nonlinear evolution of free-surface is solved by the high-order spectral method and the body potential which provides the effects of hydrofoil and shed vortex is solved by the boundary-integral method. The calculated free-surface profiles which are generated by a uniformly translating hydrofoil are compared with other experimental results. And they show relatively good agreements each other. As another example, free-surface flow generated by a heaving and translating hydrofoil is calculated and discussed.