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Abstract

The improved Green integral equation using the Kelvin-type Green function is known free
of irregular frequencies where the integral over the inner free surface ensures the square-
integrable property of the kernel. In this paper, the inner free surface integral is removed from
the integral equation, resulting in an overdetermined integral equation. The solution of the
overdelermined Green integral equation is shown identical with the solution of the improved
Green integral equation. Using the B-spline higher order panel method, the overdetermined
equation is discretized in two/different ways; one of the resulting linear system is square and
the other is redundant, Numerical experiments show that the solutions of both are identical.
Using the present methods, the exact values and higher derivatives of the potential at any
place over the wetted surface of the body can be found with much fewer panels than low
order panel methods.

Keywords : Kelvin-type Green function, Overdetermined Green integral equa-
tion, B-splines, Higher order panel method, Radiation wave

1 Introduction

Discretization of an integral equation and solving the resulting linear system are known as the
panel method which has been developed in the fields of hydrodynamics and aerodynamics since
the piongering work of Hess and Smith[Hess & Smith, 1964]. The present paper deals with the
numerical solution of the improved Green integral equation[Hong, 1984] which is free of the
irmegular frequencies. The irregular frequencies are present in the solution of the Kelvin-type
Green integral equation in the frequency domain for the radiation wave problem of the oscillating
surface-piercing body[Guevel & Kobuas, 1975]. The existence and uniqueness of the solution of
the improved Green integral equation has been shown by Hong[Hong, 1987] where the integral
over the inner free surface ensures the coincidence of the domain of integration with the range
of the integral equation. The discretization according to the low order panel method yields a
square linear system which can easily be solved by the usual Gauss elimination. There are other
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methods which can eliminate certain of the irregular frequencies in the least square sense. One of
them, due to Kobus[Kobus, 1976], allows the linearity on the first and last paneis adjacent to the
free surface, introducing two additional unknowns(the potential variation within the panel) to the
original low order panel method. To yield a square linear system, he then added the null potential
condition to the two extra control points on the inner free surface. This method is simpler than
the improved Green integral equation due to the absence of inner free surface integral, but cannot
eliminate all irregular frequencies and is vulnerable to numerical instability originating from the
junction of the linear and constant panels. The other, due to Ohmatsu[Ohmatsu, 1983], is to apply
two additional(null potential and zero horizontal velocity) conditions at a control point on the
inner free surface. The resulting linear system, being overdetermined, is solved by a least square
approach.

In this paper, the kemel of the im-

i proved Green mtegral equation will be re-

+ duced so that the inner free surface integral

F W F oo may disappear. Thus the range of the inte-
o ! gral equation is larger than the domain of

integration. Discretizing this, say, overde-
termined! Green integral equation accord-
ing to the low order panel method yields
an overdetermined lincar system. It will
be shown that the solution of this system is
identical with that of the former square sys-
Figure 1. Coordinate System. tem. Finally, by making use of the B-spline
higher order panel method, the overdeter-
mined Green integral equation will be discretized in two different ways. One of the resulting
linear system is square and the other is redundant®. The former is a square system even though the
integral equation is overdetermined and can easily be solved by the usual Gauss elimination.

2 Overdetermined Green Integral Equation

The fluid is assumed to occupy a space bounded by the wetted surface S of a surface-piercing
cylindrical body and by the free surface F' of deep water under gravity. Cartesian cocrdinates
T = {(z,y) attached to the mean position of the body, are employed with the origin o in the
waterplane W of the cylindrical body of which the generators are perpendicular to the complex
plane z = x + ¢y, the x axis coinciding with the undisturbed free surface, the y axis vertically
upward as shown in Figure 1. The body performs simple harmonic oscillations of small amplitude
about its mean posttion with circular frequency w. With the usual assumption of an incompressible
fluid and an irrotational flow, the fluid velocity is given by the gradient of a velocity potential
w = Re{®e "™} where ® denotes the complex valued radiation potential.
The first-order motion of the body can be described as follows:

A = Re{{a1&1 + azés + azés x OQ)e™™"} (1

'the terminology “overdetermined” is used in a sense that the range of the inlegral equalion is greater than the
domain of integration.
*the terminology “redundant” is used in a sense that the number of controt pormis is selected more than needed.

S
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where A is displacement vector of a point ¢} on S, O the roll center, and a,(j = 1,2, 3) denote
respectively the complex amplitude of sway, heave and roll. The potential @ is usually expressed
as follows:

3
b= —iw ) dndm 2)
=1

where ¢y, is the complex valued elementary potential associated with the unit amplitude motion
of mode m. The governing equation, the first-order free surface and body boundary conditions for
dm(m = 1,2, 3) are as follows:

Vi, = 0 influid region, m =1,2,3 (3)
rpm—l-%—[) on y=0 m=1,2,3 {4)
Ay
%—m=ém-ﬁ on 5, m=1,2 {(5)
on
%z(égx(}@)-ﬁ on § (6)
an.

where # denotes a normal vector directed into the fluid region from § and k, = w?/gy the
wavenumber. The potential must also satisfy the radiation condition at infinity.

By making use of Kelvin-type Green function which satisfies the free surface boundary con-
dition as well as the radiation condition at infinity, the value of ¢, (m = 1,2, 3) at a point P in
fluid region can be found as follows:

dsg €))

an,

bl P) = [S [3¢W(Q)G(PQ) pm(@) 20T QQ)

where (& is the Kelvin-type Green function represented in the complex plane z = = + iy as
follows:

GP,Q) =G, +Gi+ Gy (8)
with
Go(P, Q) = —Re {log{zp — 20)} (9)
G(PQ) = —iRe{log<zp - )} (10
Gj'(P, Q) = —%Re {(QJ[—’iko(zP — EQ)]} — iRe {e—f,ko(zp—fq)} (11)
where
J(0) = e“[&1(C) + im] (12)

and &) is the modified complex exponential integral[Guevel & Kobus, 1975].

The normal derivatives of potential on S, 8¢, (Q}/ng, known by the body boundary condi-
tions (5) and (6), and the value of potential on 5 U W, ¢, (()), can be found as the solution of the
improved Green integral equation:
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' G (P, O
AP 1 i@ B s = [ LD Gy,
Suw nQ fs ONQ
where (&' is the modified Kelvin-type Green function as follows
G'(P,Q) = Gy + Gi + Gy[1 — §{yp — 0)d(yg — 0)]
and
1/2 for@ € Sand P =@
A(P) = 1 for@QeWand P=¢Q

0 otherwise

FPon SUW
(13)

(14)

(13)

Discretizing (13) according to the low order panel method, one can find an M by M linear sys-

tem{denoted imGrLo in Tables and Figures)
Apr Ap _
AZL I )
dm

where the elements of submatrices are defined as follows.

1

For:=1,--- , N,

By

By

" 8G(P, _
{Auhy; = ][A (E)T@ds'g’ for j=1,--,N
Forz=1,--- , N,
F,
{Alz}‘i,_j :/ agﬁg 11Q) .SQ'; for J = ]_’... ’M _N
ASN*J nQ
Fori=1,--- ,M — N,
{AQI}i,J :f &I;N_HQGZSQT for g = 1’ L ,N
Mgy ng

and the elements of the right-hand side vector are, fort =1, ---

" 9p{(Q))
BTLQJ

)M’

f G(P, Q)dsq
As,

(16)

(17)

(18}

(19)

(20)

where NV is the number of panels on S and M — N the number of panels on W. Note that the
submatrix I is an identity matrix, since Gy in (14) vanishes when P and ¢ lie simultaneously on

W.

From the theory of integral equation, the solution of (16) by the usual Gauss elimination
converges to the solution of (13) as the number M tends to infinity. A modified Green integral

4
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equation similar to the equation (13) has been developed by Kleinman[Kleinman, 1982]. However,
since the original Kelvine-type Green function (8) was employed in his modified integral equation,
its solution is diiferent from that of the improved Green integral equation employing the modified
Kelvine-type Green function as shown in (14).

If this linear system is reduced so that the submatrices A2, A and I disappear, an N by N
linear system(denoted GrLo in Tables and Figures) can be found.

@1 By
Az : = : (21)
on By

This linear system can also be found from the original Green integral equation with the Kelvin-
type Green function as follows[John, 1950]:

7[ (@ BG P, Q)dsQ _ ] Qém_(@g(p"@)d,g@, Pon S (22)
g

dng ong
where 12 for P =0
or P =
A(F) = { 0  otherwise 2%

It is well known that the solution of (22) is undetermined when %, coincides to the one of its
irregular frequencies.

Now, if the the submatrices A ;s and I are removed from the linear system (16), an overdeter-
mined M by N{M > N) linear system(denoted ovGrLo in Tables and Figures} can be obtained

as ¢ B
1 1
A
: = N 24
[ Az ] ’ - (24)
B

The reduced matrix has independent columns since the columns of the full square matrix in the
system, imGrLa, (16) are independent. It follows that the system, ovGrLo, (24) has at most one
solution for every B which is common for the two systems. If the forcing vector B also lies in
the column space of the reduced matrix, the system (24} will have one solution identical with the
solution of (16). However, it is also possible that B does not lie in the reduced column space. In
this case, the solution of (24) is identical with the solution of (16) provided that ¢ vanishes on the
inner free surface W. Since the system (24) comprises the necessary condition for the vanishment
of » on W, B should always lie in the reduced column space, and hence the solution of the system
(24) is identical with the solution of (16). From the integral equation point of view, the system
(24) is a discretized form of the overdetermined Green integral equation as follows:

P)om (P ]f¢m BG(P 9GIAQ) o [S @;;TQ)G(RQWSQ» Pon SUW (25)

where

1/2 for@Q € Sand P =(Q)

A(P):{ 0 otherwise (26)
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3 B-spline Geometry and Potential Representation

Following Lee and Kerwin[Lee & Kerwin, 1999], we will adopt the p-th degree B-spline basis
(unctions to represent the curves and then express the curves as a weighted sum of basis functions
as

Fu)= D F/N;(u) (27)
§=0
where u is the parameter monctonically increasing along acurve, ]\7 {u) the p-th degree B-spline
basis functions, Z7 the geometric control vertices, NV the number of geometric control vertices,
N,,('u,) are in general rational functions of the parameter w, but in this paper we will consider
only the non-rational (integral) B-splines. The approach developed here can be directly applied to
gecmetry represented by NURBS without any difficulty.
Our ultimate goal is to solve for the velocity potential ¢(s) along the surface of the body.
However, instead of treating the potential directly, we will represent the potential as a weighted
sum of B-spline basis functions in a similar form as for the geometry as

N¥—]

u) = Y BN, (u) (28)
3=0

where N, (u) are the B-spline basis functions, 7 the potential control vertices and V" the number
of potentlal control vertices. The number of pﬁtentlal control vertices N and the basis function
N, (1) may be different from the corresponding quantities for the geometry, but the usable para-
metric space of the geometry and the potential should be identical. With the introduction of the
potential vertices, the unknowns of the hydrodynamic problem are now the values ot the potential
vertices, ), which are not the potential in the physical sense,

4 Discretization of Integral Equation

Discretization of the body surface in (25) into a set of N¢ panels will then yield

Z / s g“b 29)
:O n

If the equation (28) is inserted into (29), we obtain for the control point on the i-th panel the
following

*ZN ¢J+ZZ(’53 /N Z/ 31 (30)

It should be noticed that the n summation for the dipele over the panels in (30) includes the case
of self-induction, that is the case when the control point falls within the panel boundary. In the low
order panel method, this term drops out, since the effect is already considered by the subtended
angle of the circle surrounding the point where the potential is evaluated. In the higher-order panel
method, there are additional effects from the curvature or higher order varation of the geometry
and the higher order variation of the potential in addition to the subtended angle effect.
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5 Desingularization of Induction Integrals

When the control point falls within the singularity panel boundary, the function &, in (8), known
as the Rankine-type Green function, contains a logarithmically singular point, for which a special
treatment is required for evaluation of the induction integral. The other two functions 5, and Gy
in (8) are regular over the range of the overdetermined Green integral equation.

The singular behavior is most prominent when the coefficient of B-spline basis functions is
constant in (30). Lee and Kerwin[Lee & Kerwin, 1999] showed that the singularity can be removed
from the integral, and part of their work will be repeated here for completeness.

5.1 Self-Induced Potential of Rankine Sources

The induction integral of the Rankine source can also be split into two segments at the control

point as follows:
B ( [ ) Ltogras

= I ars + Iosatsn (31)

where the curvilinear coordinate s* increases from the origin located at the control point to both
sides of the panel and r = |Zp — Zg|. The strength of the source is known from the oncoming
flow, and can be expressed in power series of local curvilinear coordinate s* as:

an )y = Zaj ys* (32)

Note that the local girthlength s+ is introduced to remove the singularity in (31), as will be shown
in the following paragraphs.

The potential induced by the source at the control point located at one edge of the source panel
can be computed by introducing the series expansion for the source strength (32) as

sh 8¢
= —1
A o ogrds®

o~ Za*b/ Rs*bilogfrds*

ISH 1
= Za;b/ Rs*b#{logs*+10g('r/3*)}d.s*
5 “Jo 2

1 g*btt . gtotl 5% 5k p 1 .
B )1 _5 b lop L ds”
;QJ { whrT o8 T el +/0 T ar B

5
IO,self,R

1 * b1 h+1
* S *
= Z b [ log 3 ]

- I b+1 (b+1)?2

Ny—1
UR — Uy o 1 T ds -
1 — log —— 3
* 2 kz—:o Wk (S 95 08 du)k, 33)
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During derivation an identity relation logr = logs* + log(r/s™) is used, observing that
r/s* — 1 as r — 0. Note that the singular part is integrated analytically and the remaining
integral becomes reguiar, and hence a numerical quadrature can be applied. We may apply the
similar expression to the left-hand side of the segment to Complete the computation of the self-
induced potential due to source. To determine the coefficients o b in (33), we need to select p+ 1
or more points on each side of the panel, which may be located on the Gaussian legs, and to form
simultaneous equations, which may be solved either by the Ganssian reduction or by the least
square approach.

5.2 Self-Induced Potential due to a Rankine Dipole

The induced potential due to a Rankine dipole of constant strength can be expressed by the sub-
tended angle term and the remaining Cauchy integral as follows:

1
I er; = 5 [ 7+ Viogrds
1 [ 7
T
L1 7
- ——+g 7l - ?‘Tds (34)

where the distance vector ' is defined by a vector extending from the source point on the panel
surface to the control point. Note that the Cauchy integral is regular and causes no numerical
intepration problem as long as the zero point is avoided. By separating the integration range
into two regions at the control point as in the source integral, each region may employ a proper
Gaussian quadrature avoiding the singular point appearing at the integration boundary.

Since the higher order terms are less singular than the constant strength term, the sama numer-
ical procedure may be applied to achieve the same degree of accuracy.

5.3 Induction due to Non-Singular Integrands

Evaluation of the potential induced by non-singular integrands will not cause any problem. Being
regular, the integration can be performed by employing a proper numerical quadrature. This may
occur for the self-induction due to regular parts in (30) or for the far-field control point which
18 located away from the singular panel. Since the procedure is identical, we will show only
the numerical formulation for the far-field potential. The far-field potential due to a dipole panel
whose strength is represented by (28) may be expressed as:

., = Z/¢—ds

- St

= ZZ&“/N )95
zzw{“ﬂ““m( i) | -

I
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Since the control point is away from the dipole, to evaluate (35), we may use the Gaussian quadra-
ture, which is valid when the field point is sufficiently far from the dipole panel. Existing numerical
quadrature with selection of the proper order, say order < 4, can be used. The criterion, C'r, for
the measure of the far distance may be defined by the ratio of the distance from the centroid of the
panel to the field point, d, and the characteristic length of the panel, £. as Cr = d/£.

When the field point is not sufficiently (ar from the singularity panel, the integrand will vary
rapidly, thus requiring higher order of numerical quadrature. When the control point is considered
too close to the panel, the panel may be subdivided into 2 or more subpanels and the induction
integrals may be evalualed with the subpanels. This subdivision process may be repeated until the
predetermined criterion is satisfied.

6 Solution of Linear Systems

The number of unknown potential vertices NV is greater than the number of the panels since N* =
N?® 4+ p. Hence, if the domain of integration coincides with the range of the integral equation, we
have to place more than one control points on each panel in order io prevent the resulting linear
system 10 be underdetermined. However, since the equation (25) is overdelermined, we can place
one control point on each panel in § and N (NW > 5 control points on .

If NW = p, the resuliing linear system becomes square. Applying the relations (31) through
(35), into the integral equation (30) for N¥ control points, we will obtain a square linear sys-
tern{denoied ovGrSqHi in Tables and Figures) for N potential vertices as follows:

A¢" =B (36)

where A is N¥ x NY matrix, ¢" the unknown potential vertex strength vector and B the forcing
vecior with NV elements. This system can easily be solved by Gauss elimination.

The number of control points on W is closely related with the mode number of irregular
frequencies. For example, p control points on W are sufficient for the system, ovGrLo, (24), to
have a unique solution as long as the wavenumber is smaller than the (p + 1)th irregular frequency
of the onginal Green integral equation (22} when the wetied surface possesses symmetry with
respect to the y axis. If we need solutions of (36) for high frequency range. we have 1o employ
B-spline functions of very high degree. In principle, we can employ B-spline functions of any
degree but, in practice, the fourth degree B-spline basts functions are sufficient since they provide
the continuities of the potential and its derivatives to the third order along the wetted surface of
the body. Tn this case, say p = 4, the uniqueness of the solution of the square system (36) is
suaranteed only for the wavenumber smaller than the fifih irregular frequency.

I we want o have solutions for high frequency range while fixing the degree p to 4, it can be
done by introducing a redundant linear system(denoted ovGrRecHi in Tables and Figures) which
can be constructed by placing sufficient number N (NW > 4) of control points on W as follows:

A’ =B (37)

where A, is NOI x N¥ matrix with NCT = N? 4+ NW_ This system can be solved by a least
square approach.
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Table 1. Hydrodynamic coefficients calculated at irregular frequencies by low order panel
methods applying (16) and (24) respectively for the improved and overdetermined 'Green
integral formulation.

Linear Sway Heave
kD system M1 b1 7rlag boa
imGrLo 0.196046 0.818504 0.705396 0.281423
3.636 ovGrLo 0.196225 0.817878 0.705132 0.281481
imGrLo 0.201513 0.517204 0.828620 0.095391
{3.504 ovGrLo 0201216 (.517340 0.828554 0.09542¢6
imGrLo 0.240776 (.343718 0.888871 (0.03799¢6
9.56 ovGrLo 0.240922 (1343254 0.888777 0.037863

We have also constructed a redundant linear system{denoted GrRecHi in Tables and Figures)
which shows the influence of irregular frequencies in (22) as follows:

A¢" =B (38)

where A, is NCF x N matrix with NP = 2 x N¢ and all the control points are on the wetted
surface S,

7  Numerical Results and Discussions

A half immersed circular cylinder, of the diameter D) = 1, oscillating on the free surface of deep
water as shown in Figure 1 is selected for numerical tests,

7.1 Validation of Overdetermined Green Integral Formulation

The first task is to show, in the framework of the low order panel method, that the overdetermined
Green integral equation {25) gives correct numerical results in predicting the hydrodynamic co-
efficients through the direct comparison with those of the improved Green integral equation (13)
which has already been proved in Hong{Hong, 1987]. Table 1 shows the hydrodynamic coeffi-
cients at the first three irregular frequencies of the original Green integral equation (22), calculated
using both the equations of the low order square linear system, imGrLo, (16) and the low order
overdetermined linear system, ovGrLo, (24). The wavenumbers are nondimensionalized by the
diameter of the circular cylinder as &k, 12, The number of low order panels used 1n (16) 1s ¥ = 50
on the wetted sorface S and M — N = 6 on the inner free surface W. The same number of panels
is used for (24) on S together with 6 control points on W, The differences are shown to be of
order L0~ and are almost negligible considering single precision computation.

The next step is to show that the overdetermined Green integral, which is just proved valid for
the low order panel method, can be applied to the higher order panel method. The hydrodynamic
coefficients at the same irregular frequencies as in Table 1 are calculated using the equations
of the higher order square system. ovGrSqHi, (36} and of the higher order redundant system,

10
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Table 2. Hydrodynamic coefficients calculated at irregular frequencies by higher order
panel methods applying (36) and (37) respectively for square and redundant systems of
equations based upon overdetermined Green integral formulation.

Linear Sway Heave
koD system m b1t Mo bas
ovGrSqlli (0.195881 0.817760 0.705391 (0.28(0472
3.636 ovGrRecHi 0.195883 0.817758 0.705394 (0.280473
ovGrSqHi 0.201054 0.51558a (1828781 0.094790
6.504 ovGrRecHi 0.201055 0.515585 (0.8§28790 0.094766
ovGrSqHi 0.240910 0.341721 0.889036 0.037292
$.56 ovGrRecHi 0.240923 0.341706 (0.889096 0.037159

ovGrRecHi, (37), and compared in Table 2. The number of higher order panels used by (36) is
N? = 10) on the wetted surface, on each of which one control point is placed together with five
control points(N"W = 3) on the inner free surface W. The degree of B-spline basis [unctions is
p = 5. The same number of higher order panels with one control point per panel are used by (37)
on S but N = 6 on W, and at the same time the degree of B-spline basis functions is lowered
to p = 4. The differences are shown to be of order 107° which are indistinguishable under single
precision computation. From Tables 1 and 2, we may now conclude that the overdetermined Green
integral formulation predicts the hydrodynamic coefficients even at the irregular frequencies.

-t GtfesH]
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[~ 077 6te L 1 B 1 1 1 1 .
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Figure 2. Trregular frequencies in sway Figure 3. Irregular frequencies in heave
added mass coefficients computed by added mass coefficients computed by
GrLo {21) and GrRecHi (38), based on GrLo (21) and GrRecHi (38}, based on

original Green integral formulation. original Green integral formulation.

11



D.-C. Hang, C.-8. Lee; A B-Spline Higher Order Panel Method ...

Figure 4. Irregular frequencies in sway
wave damping coefficients computed by
GrLo (21) and GrRecHi (38), based on
original Green integral formulation.

——s—— avGISqHI
— O - ovGrao

(= o o o e e

Figure 6. Sway added mass coefficients
computed by ovGrLoe (24) and ov-
GrSqHi (36) based on overdetermined
Green integral formulation.

Figure 5. Irregular frequencies in heave
wave damping coefficients computed by
GrLo (21) and GrRecHi (38), based on
original Green integral formulation.

——=—— ovGrsgHI
— 00— - ovGrle

kD

Figure 7. Heave added mass coefficients
computed by ovGrLo (24) and ov-
GrSqHi (36) based on overdetermined
Green integral formulation.

7.2 Performance of Higher Order Panel Method

We now demonstrate the performance of the higher order panel method based on B-splines, mostly
with figures to show the general behavior of the computed results. We first show that the irregular
frequency still exists in the higher order method if formulated based on the original Green integral
equation, as shown in Figures 2 ~ 5, The number of low order panels used by the system, GrLo,
(21) is N = 50 on §. The number of higher order panels used by the system, GrRecHi, (38)

12
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———— ovGrSgHl
| - ~O— - ovGrlo
a8

0.4 -

azf

kD
Figure 8. Sway wave damping coeffi- Figure 9. Heave wave damping coeffi-
cients computed by ovGrLo (24) and ov- cients computed by oviGrLo (24) and ov-
GrSgHi (36) based on overdetermined GrSgHi (36) based on overdetermined
Green integral formulation, Green integral formulation.

is N = 20 on S with two control points placed per panel. Figures clearly show the existence
of the irregular frequencies, whose positions are dependent upon the mode of oscillations. The
detailed behavior around the irregular frequencies are magnified on each figure, which shows that
the deteriorated wave number band of the higher order method is much narrower than that of the
low order method. In the present computation, the wavenumbers are varied by Ak, ) = 0.0001
in the neighborhood of the already-known irregular frequencies.

Finaltly, the hydrodynamic coefficients computed by the B-spline higher order panel method
using the system, oviGrSqHi, (36) are compared with those computed by the low order panel
method using the system, ovGrLo, (24) as shown in Figures 6 ~ 9. The number of higher order
panels is N? = 10 on the wetted surface S and one control point are used per panel together
with five control points(N" = 5) on the inner free surface W. And the degree of B-spline basis
functions is p = 5. The number of low order panels is N = 50 on 5 and 6 control points is used on
W . As expected, the irregular frequencies are completely removed, leading to the conclusion that
the higher order technique can be a good alternative to the already-proved low order panel methed
in computing the behavior of the floating bodies on the free surface. The ability of B-splines
that guarantees higher order derivatives of the basis functions may become a deciding factor in
selecting the proper method between the low and higher order formulations.

8 Conclusions

An overdetermined Green integral equation applied to the radiation wave problem for a two-
dimensional body oscillating on the {ree surface has been presented. Its solution has been shown
1o be identical with that of the improved Green integral equation.

A square linear system as well as a redundant linear system according to the B-spline higher
order panel method have been constructed from the overdetermined Green integral equation. Nu-

13
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merical tests show that the two systems are equivalent in precision but the former is more economic
in computation, since the size of the matrix of the former is far smaller than that of the latter.

Since the B-splines have analytical derivatives of any order, the present method can better
be applied to the problem requiring higher order derivatives. for example, to the second order
potential problem of time-varying drift force calculation.
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