• Title/Summary/Keyword: surcharged flow

Search Result 13, Processing Time 0.022 seconds

Development of Urban Inundation Analysis Model Using Dual-Drainage Concept (Dual-Drainage 개념에 의한 도시침수해석모형의 개발)

  • Lee, Chang Hee;Han, Kun Yeun;Noh, Joon Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.379-387
    • /
    • 2006
  • An urban inundation model coupling an one-dimensional stormwater model, SWMM(Storm Water Management Model), and a two-dimensional inundation model was developed to simulate inundation caused by the surcharge of storm sewers in urban areas. The limitation of this model which can not simulate the interaction between drainage systems and surcharged flow was resolved by developing Dual-Drainage inundation analysis model which was based upon hydraulic flow routing procedures for surface flow and pipe flow. The Dual-Drainage inundation analysis model can simulate the effect of complex storm drainage system. The developed model was applied to Dorim, catchment. The computed inundated depth and area have good agreement with the observed data during the flood events. The developed model can help the decision support system of flood control authority for redesigning and constructing flood prevention structures and making the potential inundation zone, and establishing flood-mitigation measures.

Development of Flood Inundation Analysis System for Urban Areas using GIS (GIS를 이용한 도시유역 홍수침수 분석시스템 구축)

  • 최성열;이재영;조원철;이재호;최철관
    • Spatial Information Research
    • /
    • v.11 no.2
    • /
    • pp.155-170
    • /
    • 2003
  • Flood inundation analysis system using GIS has been developed to simulate inundation in airport drainage areas. The model developed in this study has been synthetically presented and constructed the preprocess for database construction and input data preparing through a graphic user interface, GUI system and the postprocess processing graphically output resulted in mainprocess analysis model linked GIS(ArcView/Avenue). The mainprocess analysis model was simulated in real phenomenon caused by inflow of storm sewer system by simulation flooding due to backwater effect and surcharged flow in storm sewer system by simulating interaction coupling the overland flow analysis model and storm sewer system analysis model. In the future, the flood inundation analysis system developed in this study will be a great contribution to systematic decision-making for establishing the flood-mitigation management and facilities improvement plan to flooding damage in airport.

  • PDF

An Experimental Study for Estimation of Head Loss Coefficients at Surcharged Circular Manhole (과부하 원형맨홀에서의 손실계수 산정을 위한 실험적 연구)

  • Kim, Jung-Soo;Song, Ju-Il;Jang, Suk-Jin;Yoon, Sei-Eui
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.305-314
    • /
    • 2008
  • Urban sewer systems are designed to operate in open-channel flow regime and energy loss at circular manholes are usually not significant. However, the energy loss at manholes, often exceeding the friction loss of pipes under surcharge flow, is considered as one of the major causes of inundation in urban area. Therefore, it is necessary to analyze the head loss associated with manholes, especially in surcharge flow. Hydraulic experimental apparatus which can be changed the invert type(CASE A, B, C) and step height(CASE I, II, III) was installed for this study. The range of the experimental discharges were from $1.0{\ell}/sec$ to $5.6\;{\ell}/sec$. As the manhole diameter ratio($D_m/D_{in}$) increases, head loss coefficient increases due to strong horizontal swirl motion. Head loss coefficient was maximum because of strong oscillation of water surface when the range of manhole depth ratios($h_m/D_{in}$) were from 1.0 to 1.5. The average head loss coefficients for CASE A, B, and C were 0.45, 0.37, and 0.30, respectively. Accordingly, U-invert is most effective for energy loss reduction at circular manhole. This head loss coefficients could be available to design the urban sewer system with surcharge flow.