• Title/Summary/Keyword: support vector method

Search Result 1,065, Processing Time 0.024 seconds

Improvement of Support Vector Clustering using Evolutionary Programming and Bootstrap

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.196-201
    • /
    • 2008
  • Statistical learning theory has three analytical tools which are support vector machine, support vector regression, and support vector clustering for classification, regression, and clustering respectively. In general, their performances are good because they are constructed by convex optimization. But, there are some problems in the methods. One of the problems is the subjective determination of the parameters for kernel function and regularization by the arts of researchers. Also, the results of the learning machines are depended on the selected parameters. In this paper, we propose an efficient method for objective determination of the parameters of support vector clustering which is the clustering method of statistical learning theory. Using evolutionary algorithm and bootstrap method, we select the parameters of kernel function and regularization constant objectively. To verify improved performances of proposed research, we compare our method with established learning algorithms using the data sets form ucr machine learning repository and synthetic data.

Incremental Support Vector Learning Method for Function Approximation (함수 근사를 위한 점증적 서포트 벡터 학습 방법)

  • 임채환;박주영
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.135-138
    • /
    • 2002
  • This paper addresses incremental learning method for regression. SVM(support vector machine) is a recently proposed learning method. In general training a support vector machine requires solving a QP (quadratic programing) problem. For very large dataset or incremental dataset, solving QP problems may be inconvenient. So this paper presents an incremental support vector learning method for function approximation problems.

  • PDF

A note on SVM estimators in RKHS for the deconvolution problem

  • Lee, Sungho
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.1
    • /
    • pp.71-83
    • /
    • 2016
  • In this paper we discuss a deconvolution density estimator obtained using the support vector machines (SVM) and Tikhonov's regularization method solving ill-posed problems in reproducing kernel Hilbert space (RKHS). A remarkable property of SVM is that the SVM leads to sparse solutions, but the support vector deconvolution density estimator does not preserve sparsity as well as we expected. Thus, in section 3, we propose another support vector deconvolution estimator (method II) which leads to a very sparse solution. The performance of the deconvolution density estimators based on the support vector method is compared with the classical kernel deconvolution density estimator for important cases of Gaussian and Laplacian measurement error by means of a simulation study. In the case of Gaussian error, the proposed support vector deconvolution estimator shows the same performance as the classical kernel deconvolution density estimator.

A Study on Support Vectors of Least Squares Support Vector Machine

  • Seok, Kyungha;Cho, Daehyun
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.873-878
    • /
    • 2003
  • LS-SVM(Least-Squares Support Vector Machine) has been used as a promising method for regression as well as classification. Suykens et al.(2000) used only the magnitude of residuals to obtain SVs(Support Vectors). Suykens' method behaves well for homogeneous model. But in a heteroscedastic model, the method shows a poor behavior. The present paper proposes a new method to get SVs. The proposed method uses the variance of noise as well as the magnitude of residuals to obtain support vectors. Through the simulation study we justified excellence of our proposed method.

A Note on Deconvolution Estimators when Measurement Errors are Normal

  • Lee, Sung-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.517-526
    • /
    • 2012
  • In this paper a support vector method is proposed for use when the sample observations are contaminated by a normally distributed measurement error. The performance of deconvolution density estimators based on the support vector method is explored and compared with kernel density estimators by means of a simulation study. An interesting result was that for the estimation of kurtotic density, the support vector deconvolution estimator with a Gaussian kernel showed a better performance than the classical deconvolution kernel estimator.

An Application of Support Vector Machines to Personal Credit Scoring: Focusing on Financial Institutions in China (Support Vector Machines을 이용한 개인신용평가 : 중국 금융기관을 중심으로)

  • Ding, Xuan-Ze;Lee, Young-Chan
    • Journal of Industrial Convergence
    • /
    • v.16 no.4
    • /
    • pp.33-46
    • /
    • 2018
  • Personal credit scoring is an effective tool for banks to properly guide decision profitably on granting loans. Recently, many classification algorithms and models are used in personal credit scoring. Personal credit scoring technology is usually divided into statistical method and non-statistical method. Statistical method includes linear regression, discriminate analysis, logistic regression, and decision tree, etc. Non-statistical method includes linear programming, neural network, genetic algorithm and support vector machine, etc. But for the development of the credit scoring model, there is no consistent conclusion to be drawn regarding which method is the best. In this paper, we will compare the performance of the most common scoring techniques such as logistic regression, neural network, and support vector machines using personal credit data of the financial institution in China. Specifically, we build three models respectively, classify the customers and compare analysis results. According to the results, support vector machine has better performance than logistic regression and neural networks.

Semi-supervised regression based on support vector machine

  • Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.2
    • /
    • pp.447-454
    • /
    • 2014
  • In many practical machine learning and data mining applications, unlabeled training examples are readily available but labeled ones are fairly expensive to obtain. Therefore semi-supervised learning algorithms have attracted much attentions. However, previous research mainly focuses on classication problems. In this paper, a semi-supervised regression method based on support vector regression (SVR) formulation that is proposed. The estimator is easily obtained via the dual formulation of the optimization problem. The experimental results with simulated and real data suggest superior performance of the our proposed method compared with standard SVR.

Semisupervised support vector quantile regression

  • Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.517-524
    • /
    • 2015
  • Unlabeled examples are easier and less expensive to be obtained than labeled examples. In this paper semisupervised approach is used to utilize such examples in an effort to enhance the predictive performance of nonlinear quantile regression problems. We propose a semisupervised quantile regression method named semisupervised support vector quantile regression, which is based on support vector machine. A generalized approximate cross validation method is used to choose the hyper-parameters that affect the performance of estimator. The experimental results confirm the successful performance of the proposed S2SVQR.

A transductive least squares support vector machine with the difference convex algorithm

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.2
    • /
    • pp.455-464
    • /
    • 2014
  • Unlabeled examples are easier and less expensive to obtain than labeled examples. Semisupervised approaches are used to utilize such examples in an eort to boost the predictive performance. This paper proposes a novel semisupervised classication method named transductive least squares support vector machine (TLS-SVM), which is based on the least squares support vector machine. The proposed method utilizes the dierence convex algorithm to derive nonconvex minimization solutions for the TLS-SVM. A generalized cross validation method is also developed to choose the hyperparameters that aect the performance of the TLS-SVM. The experimental results conrm the successful performance of the proposed TLS-SVM.

Restricted support vector quantile regression without crossing

  • Shim, Joo-Yong;Lee, Jang-Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1319-1325
    • /
    • 2010
  • Quantile regression provides a more complete statistical analysis of the stochastic relationships among random variables. Sometimes quantile functions estimated at different orders can cross each other. We propose a new non-crossing quantile regression method applying support vector median regression to restricted regression quantile, restricted support vector quantile regression. The proposed method provides a satisfying solution to estimating non-crossing quantile functions when multiple quantiles for high dimensional data are needed. We also present the model selection method that employs cross validation techniques for choosing the parameters which aect the performance of the proposed method. One real example and a simulated example are provided to show the usefulness of the proposed method.