참고문헌
- Blum, A. and Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. Proceedings of the 11th Annual Conference on Computational Learning Theory, 92-100, Madison, Wisconsin, United States.
- Chapelle, O., Sindhwani, V. and Keerthi, S. (2008). Optimization techniques for semisupervised support vector machines. Journal of Machine Learning Research, 9, 203-233.
- Chen, Y., Wang, G. and Dong, S. (2002). Learning with progressive transductive support vector machine. Proceedings of International Conference on Data Mining, 67-74, Maebashi City, Japan.
- Hwang, H. (2010). Fixed size LS-SVM for multiclassification problems of large datasets. Journal of the Korean Data & Information Science Society, 21, 561-567.
- Koenker, R. and Bassett, G. (1978). Regression quantile. Econometrica, 46, 33-50. https://doi.org/10.2307/1913643
- Koenker, R. (2005). Quantile regression, Cambridge University Press.
- Kuhn, H. W. and Tucker, A. W. (1951). Nonlinear programming. In Proceedings of 2nd Berkeley Symposium, 481-492, University of California Press, Berkeley.
- Li, Y., Liu, Y. and Zhu, J. (2007). Quantile regression in reproducing kernel hilbert spaces. Journal of the American Statistical Association, 102, 255-268. https://doi.org/10.1198/016214506000000979
- Mercer, J. (1909). Functions of positive and negative type and their connection with theory of integral equations. Philosophical Transactions of Royal Society A, 415-446.
- Seok, K. H. (2010). Semi-supervised classification with LS-SVM formulation. Journal of the Korean Data & Information Science Society, 21, 461-470.
- Seok, K. H. (2012). Study on semi-supervised local constant regression estimation. Journal of the Korean Data & Information Science Society, 23, 579-585. https://doi.org/10.7465/jkdi.2012.23.3.579
- Seok, K. H. (2014). Semi-supervised regression based on support vector machine Journal of the Korean Data & Information Science Society, 25, 447-454. https://doi.org/10.7465/jkdi.2014.25.2.447
- Seok, K. H. (2013). A study on semi-supervised kernel ridge regression estimation. Journal of the Korean Data & Information Science Society, 24, 341-53. https://doi.org/10.7465/jkdi.2013.24.2.341
- Shim, J. and Hwang, C. (2009). Support vector censored quantile regression under random censoring. Computational Statistics and Data Analysis, 53, 912-917. https://doi.org/10.1016/j.csda.2008.10.037
- Smola, A. and Scholkopf, B. (1998). On a Kernel-based method for pattern recognition, regression, approximation and operator inversion. Algorithmica, 22, 211-231. https://doi.org/10.1007/PL00013831
- Suykens, J. A. K. and Vanderwalle, J. (1999). Least square support vector machine classifier. Neural Pro-cessing Letters, 9, 293-300. https://doi.org/10.1023/A:1018628609742
- Vapnik, V. N. (1995). The nature of statistical learning theory, Springer, New York.
- Vapnik, V. N. (1998). Statistical learning theory, John Wiley, New York.
- Wang, L.(Ed.) (2005). Support vector machines: Theory and application, Springer, Berlin Heidelberg, New York.
- Wang, J., Shen, X. and Pan, W. (2007). On transductive support vector machine. Contemporary Mathematics, 43, 7-19.
- Xu, S., An, X., Qiao, X., Zhu, L. and Li, L. (2011). Semisupervised least squares support vector regression machines. Journal of Information & Computational Science, 8, 885-892.
- Yu, K., Lu, Z. and Stander, J. (2003). Quantile regression: applications and current research area. The Statistician, 52, 331-350.
- Yuan, M. (2006). GACV for quantile smoothing splines. Computational Statistics and Data Analysis, 50, 813-829. https://doi.org/10.1016/j.csda.2004.10.008
피인용 문헌
- Deep LS-SVM for regression vol.27, pp.3, 2016, https://doi.org/10.7465/jkdi.2016.27.3.827
- Geographically weighted kernel logistic regression for small area proportion estimation vol.27, pp.2, 2016, https://doi.org/10.7465/jkdi.2016.27.2.531
- Smoothing parameter selection in semi-supervised learning vol.27, pp.4, 2016, https://doi.org/10.7465/jkdi.2016.27.4.993
- Multioutput LS-SVR based residual MCUSUM control chart for autocorrelated process vol.27, pp.2, 2016, https://doi.org/10.7465/jkdi.2016.27.2.523
- 심층 다중 커널 최소제곱 서포트 벡터 회귀 기계 vol.29, pp.4, 2015, https://doi.org/10.7465/jkdi.2018.29.4.895