References
- Breheny, P. and Huang, J. (2011). Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Annals of Applied Statistics, 5, 232-253. https://doi.org/10.1214/10-AOAS388
- Chiang, A. P., Beck, J. S., Yen, H. J., Tayeh, M. K., Scheetz, T. E., Swiderski, R. E., Sheffeld, V. C. et al. (2006). Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). Proceedings of the National Academy of Sciences, 103, 6287-6292. https://doi.org/10.1073/pnas.0600158103
- Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression. Annals of Statistics, 32, 407-499. https://doi.org/10.1214/009053604000000067
- Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
- Fan, J. and Li, R. (2001). Variable selection for Cox's proportional hazards model and frailty model. Annals of Statistics, 30, 74-99.
- Friedman, J., Hastie, T. and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432-441. https://doi.org/10.1093/biostatistics/kxm045
- Friedman, J., Hastie, T. and Tibshirani, R. (2008). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33, 1-22.
- Kim, Y., Choi, H. and Oh, H. S. (2008). Smoothly clipped absolute deviation on high dimensions. Journal of the American Statistical Association, 103, 1665-1673. https://doi.org/10.1198/016214508000001066
- Kim, Y. and Kwon, S. (2012). Global optimality of nonconvex penalized estimators. Biometrika, 99, 315-325. https://doi.org/10.1093/biomet/asr084
- Kwon, S., Han, S. and Lee, S. (2013). A small review and further studies on the lasso. Journal of the Korean Data & Information Science Society, 24, 1077-1088. https://doi.org/10.7465/jkdi.2013.24.5.1077
- Park, C. (2013). Simple principal component analysis using lasso. Journal of the Korean Data & Information Science Society, 24, 533-541. https://doi.org/10.7465/jkdi.2013.24.3.533
- Scheetz, T. E., Kim, K. Y. A., Swiderski, R. E., Philp, A. R., Braun, T. A., Knudtson, K. L., Dibona, G. F., Stone, E. M. et al. (2006). Regulation of gene expression in the mammalian eye and its relevance to eye disease. Proceedings of the National Academy of Sciences, 103, 14429-14434. https://doi.org/10.1073/pnas.0602562103
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B, 58, 267-288.
- Tseng, P. (2001). Convergence of a block coordinate descent method for nondierentiable minimization. Journal of Optimization Theory and Applications, 109, 475-494. https://doi.org/10.1023/A:1017501703105
- Van de Geer, S. A. (2008). High-dimensional generalized linear models and the lasso. Annals of Statistics, 36, 614-645. https://doi.org/10.1214/009053607000000929
- Yuille, A. L. and Rangarajan, A. (2003). The concave-convex procedure. Neural Computation, 15, 915-936. https://doi.org/10.1162/08997660360581958
- Zhang, C. (2010). Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics, 38, 894-942. https://doi.org/10.1214/09-AOS729
Cited by
- Estimation for misclassified data with ultra-high levels vol.27, pp.1, 2016, https://doi.org/10.7465/jkdi.2016.27.1.217
- Analysis of multi-center bladder cancer survival data using variable-selection method of multi-level frailty models vol.27, pp.2, 2016, https://doi.org/10.7465/jkdi.2016.27.2.499
- Variable selection in Poisson HGLMs using h-likelihoood vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1513