• Title/Summary/Keyword: support optimization

Search Result 765, Processing Time 0.022 seconds

In Out-of Vocabulary Rejection Algorithm by Measure of Normalized improvement using Optimization of Gaussian Model Confidence (미등록어 거절 알고리즘에서 가우시안 모델 최적화를 이용한 신뢰도 정규화 향상)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.125-132
    • /
    • 2010
  • In vocabulary recognition has unseen tri-phone appeared when recognition training. This system has not been created beginning estimation figure of model parameter. It's bad points could not be created that model for phoneme data. Therefore it's could not be secured accuracy of Gaussian model. To improve suggested Gaussian model to optimized method of model parameter using probability distribution. To improved of confidence that Gaussian model to optimized of probability distribution to offer by accuracy and to support searching of phoneme data. This paper suggested system performance comparison as a result of recognition improve represent 1.7% by out-of vocabulary rejection algorithm using normalization confidence.

Development of a Simulation Tool to Evaluate GNSS Positioning Performance in Urban Area

  • Wu, Falin;Liu, Gang-Jun;Zhang, Kefei;Densley, Liam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.71-76
    • /
    • 2006
  • With the rapid development of spatial infrastructure in US, Europe, Japan, China and India, there is no doubt that the next generation Global Navigation Satellite System (GNSS) will improve the integrity, accuracy, reliability and availability of the position solution. GNSS is becoming an essential element of personal, commercial and public infrastructure and consequently part of our daily lives. However, the applicability of GPS in supporting a range of location-sensitive applications such as location based services in an urban environment is severely curtailed by the interference of the 3D urban settings. To characterize and gain in-depth understanding of such interferences and to be able to provide location-based optimization alternatives, a high-fidelity 3D urban model of Melbourne CBD built with ArcGIS and large scale high-resolution spatial data sets is used in this study to support a comprehensive simulation of current and future GNSS signal performance, in terms of signal continuity, availability, strength, geometry, positioning accuracy and reliability based on a number of scenarios. The design, structure and major components of the simulator are outlined. Useful time-stamped spatial patterns of the signal performance over the experimental urban area have been revealed which are valuable for supporting location based services applications, such as emergency responses, the optimization of wireless communication infrastructures and vehicle navigation services.

  • PDF

Methodology for Optimizing Parameters of Vehicle Safety Regulation on Pedestrian Protection (보행자-차량 충돌안전기준 매개변수 최적화 방법론 개발 및 적용)

  • Oh, Cheol;Kim, Beom-Il;Kang, Youn-Soo;Youn, Young-Han
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.186-194
    • /
    • 2006
  • Traffic accident involved with the vulnerable pedestrian is one of the significant concerns, which has higher possibility of fatality than any other accident types. Worldwide significant efforts have been made to establish a vehicle safety regulation, which is internationally agreed, in order to reduce pedestrian casualties in pedestrian-vehicle collisions. One of the key issues in deriving the regulation is how to effectively select the parameter values associated with the regulation. This study firstly develops a method to optimize parameter values. An optimizing problem in terms of maximizing safety benefits, which are life-saving effects by the regulation, is formulated. Extensive actual accident data analysis and simulations are conducted to establish several statistical models to be used in the proposed optimization procedure. A set of parameter values that can produce maximizing life-saving effects is presented as the outcome of this study. It is expected that the proposed method would play a significant role in determining parameters as a decision support tool toward ensuring better pedestrian safety.

Prototype Development for Optimization Technique of 3D Visualization of Atmospheric Environmental Information (기상 및 대기질 정보의 3차원 표출 최적화를 위한 시제품 개발 연구)

  • Kim, Gunwoo;Na, Hana;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.1047-1059
    • /
    • 2019
  • To address the increase of weather hazards and the emergence of new types of such hazards, an optimization technique for three-dimensional (3D) representation of meteorological facts and atmospheric information was examined in this study as a novel method for weather analysis. The proposed system is termed as "meteorological and air quality information visualization engine" (MAIVE), and it can support several file formats and can implement high-resolution 3D terrain by employing a 30 m resolution digital elevation model. In this study, latest 3D representation techniques such as wind vector fields, contour maps, stream vector, stream line flow along the wind field and 3D volume rendering were applied. Implementation of the examples demonstrates that the results of numerical modeling are well reflected, and new representation techniques can facilitate the observation of meteorological factors and atmospheric information from different perspectives.

Real-time Camera and Video Streaming Through Optimized Settings of Ethernet AVB in Vehicle Network System

  • An, Byoungman;Kim, Youngseop
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.3025-3047
    • /
    • 2021
  • This paper presents the latest Ethernet standardization of in-vehicle network and the future trends of automotive Ethernet technology. The proposed system provides design and optimization algorithms for automotive networking technology related to AVB (Audio Video Bridge) technology. We present a design of in-vehicle network system as well as the optimization of AVB for automotive. A proposal of Reduced Latency of Machine to Machine (RLMM) plays an outstanding role in reducing the latency among devices. RLMM's approach to real-world experimental cases indicates a reduction in latency of around 41.2%. The setup optimized for the automotive network environment is expected to significantly reduce the time in the development and design process. The results obtained in the study of image transmission latency are trustworthy because average values were collected over a long period of time. It is necessary to analyze a latency between multimedia devices within limited time which will be of considerable benefit to the industry. Furthermore, the proposed reliable camera and video streaming through optimized AVB device settings would provide a high level of support in the real-time comprehension and analysis of images with AI (Artificial Intelligence) algorithms in autonomous driving.

Dual-Encoded Features from Both Spatial and Curvelet Domains for Image Smoke Recognition

  • Yuan, Feiniu;Tang, Tiantian;Xia, Xue;Shi, Jinting;Li, Shuying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2078-2093
    • /
    • 2019
  • Visual smoke recognition is a challenging task due to large variations in shape, texture and color of smoke. To improve performance, we propose a novel smoke recognition method by combining dual-encoded features that are extracted from both spatial and Curvelet domains. A Curvelet transform is used to filter an image to generate fifty sub-images of Curvelet coefficients. Then we extract Local Binary Pattern (LBP) maps from these coefficient maps and aggregate histograms of these LBP maps to produce a histogram map. Afterwards, we encode the histogram map again to generate Dual-encoded Local Binary Patterns (Dual-LBP). Histograms of Dual-LBPs from Curvelet domain and Completed Local Binary Patterns (CLBP) from spatial domain are concatenated to form the feature for smoke recognition. Finally, we adopt Gaussian Kernel Optimization (GKO) algorithm to search the optimal kernel parameters of Support Vector Machine (SVM) for further improvement of classification accuracy. Experimental results demonstrate that our method can extract effective and reasonable features of smoke images, and achieve good classification accuracy.

CoMP Transmission for Safeguarding Dense Heterogeneous Networks with Imperfect CSI

  • XU, Yunjia;HUANG, Kaizhi;HU, Xin;ZOU, Yi;CHEN, Yajun;JIANG, Wenyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.110-132
    • /
    • 2019
  • To ensure reliable and secure communication in heterogeneous cellular network (HCN) with imperfect channel state information (CSI), we proposed a coordinated multipoint (CoMP) transmission scheme based on dual-threshold optimization, in which only base stations (BSs) with good channel conditions are selected for transmission. First, we present a candidate BSs formation policy to increase access efficiency, which provides a candidate region of serving BSs. Then, we design a CoMP networking strategy to select serving BSs from the set of candidate BSs, which degrades the influence of channel estimation errors and guarantees qualities of communication links. Finally, we analyze the performance of the proposed scheme, and present a dual-threshold optimization model to further support the performance. Numerical results are presented to verify our theoretical analysis, which draw a conclusion that the CoMP transmission scheme can ensure reliable and secure communication in dense HCNs with imperfect CSI.

A cavitation performance prediction method for pumps: Part2-sensitivity and accuracy

  • Long, Yun;Zhang, Yan;Chen, Jianping;Zhu, Rongsheng;Wang, Dezhong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3612-3624
    • /
    • 2021
  • At present, in the case of pump fast optimization, there is a problem of rapid, accurate and effective prediction of cavitation performance. In "A Cavitation Performance Prediction Method for Pumps PART1-Proposal and Feasibility" [1], a new cavitation performance prediction method is proposed, and the feasibility of this method is demonstrated in combination with experiments of a mixed flow pump. However, whether this method is applicable to vane pumps with different specific speeds and whether the prediction results of this method are accurate is still worthy of further study. Combined with the experimental results, the research evaluates the sensitivity and accuracy at different flow rates. For a certain operating condition, the method has better sensitivity to different flow rates. This is suitable for multi-parameter multi-objective optimization of pump impeller. For the test mixed flow pump, the method is more accurate when the area ratios are 13.718% and 13.826%. The cavitation vortex flow is obtained through high-speed camera, and the correlation between cavitation flow structure and cavitation performance is established to provide more scientific support for cavitation performance prediction. The method is not only suitable for cavitation performance prediction of the mixed flow pump, but also can be expanded to cavitation performance prediction of blade type hydraulic machinery, which will solve the problem of rapid prediction of hydraulic machinery cavitation performance.

Optimizing Study-life Balance within Higher Education: A Comprehensive Literature Review

  • HATCHER, Ryan;HWANG, Yosung
    • The Journal of Economics, Marketing and Management
    • /
    • v.8 no.2
    • /
    • pp.1-12
    • /
    • 2020
  • Purpose: The rise of the phrase Work Life Balance was bought up in 1986 when amid many Americans there was prevalence of detrimental work place practices like neglecting families, leisure activities and friends in order to achieve their study place goals. The significance of work-life balance has been gaining ground in recent years to grasp a wider range of groups, including students. Searching and finding a balance can be complex and challenging for many individuals and students. Research design, data and methodology: Through this paper we will explore how students balance the competing demands of work, study, and social activities. Several factors have increased imbalances within Educational organizations, and technology specifically has been influential. However, technology also provides a novel solution to this organizational performance management issue. A Study-Life Optimization model (SLO) is suggested, which incorporates information systems, analytics, and decision support into a Smart Service System. A general framework for this model, detailing data collection, measurement, and ethical issues is explained briefly. Results: Outcomes include improved WLB, greater perceived quality of life, and increased Educational organizational performance. Conclusions: This paper contributes to the relevant literature as it pays attention to the various students' of varying lifestyles school-work-personal lives. Findings of this study will provide a meaningful of the Work/school-life balance issues faced by students. The research could be helpful to the various stakeholders of a University, the curriculum designers, program coordinators etc.

Modelling the deflection of reinforced concrete beams using the improved artificial neural network by imperialist competitive optimization

  • Li, Ning;Asteris, Panagiotis G.;Tran, Trung-Tin;Pradhan, Biswajeet;Nguyen, Hoang
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.733-745
    • /
    • 2022
  • This study proposed a robust artificial intelligence (AI) model based on the social behaviour of the imperialist competitive algorithm (ICA) and artificial neural network (ANN) for modelling the deflection of reinforced concrete beams, abbreviated as ICA-ANN model. Accordingly, the ICA was used to adjust and optimize the parameters of an ANN model (i.e., weights and biases) aiming to improve the accuracy of the ANN model in modelling the deflection reinforced concrete beams. A total of 120 experimental datasets of reinforced concrete beams were employed for this aim. Therein, applied load, tensile reinforcement strength and the reinforcement percentage were used to simulate the deflection of reinforced concrete beams. Besides, five other AI models, such as ANN, SVM (support vector machine), GLMNET (lasso and elastic-net regularized generalized linear models), CART (classification and regression tree) and KNN (k-nearest neighbours), were also used for the comprehensive assessment of the proposed model (i.e., ICA-ANN). The comparison of the derived results with the experimental findings demonstrates that among the developed models the ICA-ANN model is that can approximate the reinforced concrete beams deflection in a more reliable and robust manner.