• Title/Summary/Keyword: support optimization

Search Result 765, Processing Time 0.029 seconds

Using GAs to Support Feature Weighting and Instance Selection in CBR for CRM

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.516-525
    • /
    • 2005
  • Case-based reasoning (CBR) has been widely used in various areas due to its convenience and strength in complex problem solving. Generally, in order to obtain successful results from CBR, effective retrieval of useful prior cases for the given problem is essential. However, designing a good matching and retrieval mechanism for CBR systems is still a controversial research issue. Most prior studies have tried to optimize the weights of the features or selection process of appropriate instances. But, these approaches have been performed independently until now. Simultaneous optimization of these components may lead to better performance than in naive models. In particular, there have been few attempts to simultaneously optimize the weight of the features and selection of the instances for CBR. Here we suggest a simultaneous optimization model of these components using a genetic algorithm (GA). We apply it to a customer classification model which utilizes demographic characteristics of customers as inputs to predict their buying behavior for a specific product. Experimental results show that simultaneously optimized CBR may improve the classification accuracy and outperform various optimized models of CBR as well as other classification models including logistic regression, multiple discriminant analysis, artificial neural networks and support vector machines.

  • PDF

Optimal SVM learning method based on adaptive sparse sampling and granularity shift factor

  • Wen, Hui;Jia, Dongshun;Liu, Zhiqiang;Xu, Hang;Hao, Guangtao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1110-1127
    • /
    • 2022
  • To improve the training efficiency and generalization performance of a support vector machine (SVM) in a large-scale set, an optimal SVM learning method based on adaptive sparse sampling and the granularity shift factor is presented. The proposed method combines sampling optimization with learner optimization. First, an adaptive sparse sampling method based on the potential function density clustering is designed to adaptively obtain sparse sampling samples, which can achieve a reduction in the training sample set and effectively approximate the spatial structure distribution of the original sample set. A granularity shift factor method is then constructed to optimize the SVM decision hyperplane, which fully considers the neighborhood information of each granularity region in the sparse sampling set. Experiments on an artificial dataset and three benchmark datasets show that the proposed method can achieve a relatively higher training efficiency, as well as ensure a good generalization performance of the learner. Finally, the effectiveness of the proposed method is verified.

Improved marine predators algorithm for feature selection and SVM optimization

  • Jia, Heming;Sun, Kangjian;Li, Yao;Cao, Ning
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1128-1145
    • /
    • 2022
  • Owing to the rapid development of information science, data analysis based on machine learning has become an interdisciplinary and strategic area. Marine predators algorithm (MPA) is a novel metaheuristic algorithm inspired by the foraging strategies of marine organisms. Considering the randomness of these strategies, an improved algorithm called co-evolutionary cultural mechanism-based marine predators algorithm (CECMPA) is proposed. Through this mechanism, search agents in different spaces can share knowledge and experience to improve the performance of the native algorithm. More specifically, CECMPA has a higher probability of avoiding local optimum and can search the global optimum quickly. In this paper, it is the first to use CECMPA to perform feature subset selection and optimize hyperparameters in support vector machine (SVM) simultaneously. For performance evaluation the proposed method, it is tested on twelve datasets from the university of California Irvine (UCI) repository. Moreover, the coronavirus disease 2019 (COVID-19) can be a real-world application and is spreading in many countries. CECMPA is also applied to a COVID-19 dataset. The experimental results and statistical analysis demonstrate that CECMPA is superior to other compared methods in the literature in terms of several evaluation metrics. The proposed method has strong competitive abilities and promising prospects.

Kernel Adatron Algorithm of Support Vector Machine for Function Approximation (함수근사를 위한 서포트 벡터 기계의 커널 애더트론 알고리즘)

  • Seok, Kyung-Ha;Hwang, Chang-Ha
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.6
    • /
    • pp.1867-1873
    • /
    • 2000
  • Function approximation from a set of input-output pairs has numerous applications in scientific and engineering areas. Support vector machine (SVM) is a new and very promising classification, regression and function approximation technique developed by Vapnik and his group at AT&TG Bell Laboratories. However, it has failed to establish itself as common machine learning tool. This is partly due to the fact that this is not easy to implement, and its standard implementation requires the use of optimization package for quadratic programming (QP). In this appear we present simple iterative Kernel Adatron (KA) algorithm for function approximation and compare it with standard SVM algorithm using QP.

  • PDF

A Study on efficient contact analysis and optimum support design using commercial analysis software (상용 해석 소프트웨어를 이용한 접촉문제의 효과적 해석 및 최적 지지점 설계)

  • 최주호;원준호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.437-444
    • /
    • 2004
  • In this study, an optimum support design problem is considered to minimize displacement of stacked plates under self weight condition. During the displacement analysis, several kinds of contact arise between the plates themselves and support bar. These can be easily considered if commercial analysis software, which provides capability to solve the contact problem, is used. It is found, however, that the computing time is extraordinarily long due possibly to the generality of the software and also to the ignorance of the control parameters used in the software. In this paper, the contact condition is imposed directly by the authors, while the software is used only to solve the ordinary displacement analysis problem. In this way, the computing time is decreased remarkably by more than 30 times, while yielding the same accurate results. Optimization is conducted based on this efficient analysis method to find minimum number of supporting bars using the response surface algorithm.

  • PDF

Adaptive ridge procedure for L0-penalized weighted support vector machines

  • Kim, Kyoung Hee;Shin, Seung Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1271-1278
    • /
    • 2017
  • Although the $L_0$-penalty is the most natural choice to identify the sparsity structure of the model, it has not been widely used due to the computational bottleneck. Recently, the adaptive ridge procedure is developed to efficiently approximate a $L_q$-penalized problem to an iterative $L_2$-penalized one. In this article, we proposed to apply the adaptive ridge procedure to solve the $L_0$-penalized weighted support vector machine (WSVM) to facilitate the corresponding optimization. Our numerical investigation shows the advantageous performance of the $L_0$-penalized WSVM compared to the conventional WSVM with $L_2$ penalty for both simulated and real data sets.

Fault diagnosis of rotating machinery using multi-class support vector machines (Multi-class SVM을 이용한 회전기계의 결함 진단)

  • 황원우;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.537-543
    • /
    • 2003
  • Condition monitoring and fault diagnosis of machines are gaining importance in the industry because of the need to increase reliability and to decrease possible loss of production due to machine breakdown. By comparing the vibration signals of a machine running in normal and faulty conditions, detection of faults like mass unbalance, shaft misalignment and bearing defects is possible. This paper presents a novel approach for applying the fault diagnosis of rotating machinery. To detect multiple faults in rotating machinery, a feature selection method and support vector machine (SVM) based multi-class classifier are constructed and used in the faults diagnosis. The results in experiments prove that fault types can be diagnosed by the above method.

  • PDF

DSS Architectures to Support Data Mining Activities for Supply Chain Management (데이터 마이닝을 활용한 공급사슬관리 의사결정지원시스템의 구조에 관한 연구)

  • Jhee, Won-Chul;Suh, Min-Soo
    • Asia pacific journal of information systems
    • /
    • v.8 no.3
    • /
    • pp.51-73
    • /
    • 1998
  • This paper is to evaluate the application potentials of data mining in the areas of Supply Chain Management (SCM) and to suggest the architectures of Decision Support Systems (DSS) that support data mining activities. We first briefly introduce data mining and review the recent literatures on SCM and then evaluate data mining applications to SCM in three aspects: marketing, operations management and information systems. By analyzing the cases about pricing models in distribution channels, demand forecasting and quality control, it is shown that artificial intelligence techniques such as artificial neural networks, case-based reasoning and expert systems, combined with traditional analysis models, effectively mine the useful knowledge from the large volume of SCM data. Agent-based information system is addressed as an important architecture that enables the pursuit of global optimization of SCM through communication and information sharing among supply chain constituents without loss of their characteristics and independence. We expect that the suggested architectures of intelligent DSS provide the basis in developing information systems for SCM to improve the quality of organizational decisions.

  • PDF

Combining genetic algorithms and support vector machines for bankruptcy prediction

  • Min, Sung-Hwan;Lee, Ju-Min;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.179-188
    • /
    • 2004
  • Bankruptcy prediction is an important and widely studied topic since it can have significant impact on bank lending decisions and profitability. Recently, support vector machine (SVM) has been applied to the problem of bankruptcy prediction. The SVM-based method has been compared with other methods such as neural network, logistic regression and has shown good results. Genetic algorithm (GA) has been increasingly applied in conjunction with other AI techniques such as neural network, CBR. However, few studies have dealt with integration of GA and SVM, though there is a great potential for useful applications in this area. This study proposes the methods for improving SVM performance in two aspects: feature subset selection and parameter optimization. GA is used to optimize both feature subset and parameters of SVM simultaneously for bankruptcy prediction.

  • PDF

Research on a simulation-based ship production support system for middle-sized shipbuilding companies

  • Song, Young-Joo;Wo, Jong-Hun;Shin, Jong-Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.70-77
    • /
    • 2009
  • Today, many middle-sized shipbuilding companies in Korea are experiencing strong competition from shipbuilding companies in other nations. This competition is particularly affecting small- and middle-sized shipyards, rather than the major shipyards that have their own support systems and development capabilities. The acquisition of techniques that would enable maximization of production efficiency and minimization of the gap between planning and execution would increase the competitiveness of small- and middle-sized Korean shipyards. In this paper, research on a simulation-based support system for ship production management, which can be applied to the shipbuilding processes of middle-sized shipbuilding companies, is presented. The simulation research includes layout optimization, load balancing, work stage operation planning, block logistics, and integrated material management. Each item is integrated into a network system with a value chain that includes all shipbuilding processes.