• 제목/요약/키워드: supplement submodule

검색결과 9건 처리시간 0.02초

SA-SUPPLEMENT SUBMODULES

  • Durgun, Yilmaz
    • 대한수학회보
    • /
    • 제58권1호
    • /
    • pp.147-161
    • /
    • 2021
  • In this paper, we introduced and studied sa-supplement submodules. A submodule U of a module V is called an sa-supplement submodule in V if there exists a submodule T of V such that V = T + U and U ∩ T is semiartinian. The class of sa-supplement sequences ������ is a proper class which is generated by socle-free modules injectively. We studied modules that have an sa-supplement in every extension, modules whose all submodules are sa-supplement and modules whose all sa-supplement submodules are direct summand. We provided new characterizations of right semiartinian rings and right SSI rings.

On Lifting Modules and Weak Lifting Modules

  • Tutuncu, Derya Keskin;Tribak, Rachid
    • Kyungpook Mathematical Journal
    • /
    • 제45권3호
    • /
    • pp.445-453
    • /
    • 2005
  • We say that a module M is weak lifting if M is supplemented and every supplement submodule of M is a direct summand. The module M is called lifting, if it is weak lifting and amply supplemented. This paper investigates the structure of weak lifting modules and lifting modules having small radical over commutative noetherian rings.

  • PDF

WEAKLY ⊕-SUPPLEMENTED MODULES AND WEAKLY D2 MODULES

  • Hai, Phan The;Kosan, Muhammet Tamer;Quynh, Truong Cong
    • 대한수학회보
    • /
    • 제57권3호
    • /
    • pp.691-707
    • /
    • 2020
  • In this paper, we introduce and study the notions of weakly ⊕-supplemented modules, weakly D2 modules and weakly D2-covers. A right R-module M is called weakly ⊕-supplemented if every non-small submodule of M has a supplement that is not essential in M, and module MR is called weakly D2 if it satisfies the condition: for every s ∈ S and s ≠ 0, if there exists n ∈ ℕ such that sn ≠ 0 and Im(sn) is a direct summand of M, then Ker(sn) is a direct summand of M. The class of weakly ⊕-supplemented-modules and weakly D2 modules contains ⊕-supplemented modules and D2 modules, respectively, and they are equivalent in case M is uniform, and projective, respectively.

ON COFINITELY CLOSED WEAK δ-SUPPLEMENTED MODULES

  • Sozen, Esra Ozturk
    • 호남수학학술지
    • /
    • 제42권3호
    • /
    • pp.511-520
    • /
    • 2020
  • A module M is called cofinitely closed weak δ-supplemented (briefly δ-ccws-module) if for any cofinite closed submodule N of M has a weak δ-supplement in M. In this paper we investigate the basic properties of δ-ccws modules. In the light of this study, we can list the main facts obtained as following: (1) Any cofinite closed direct summand of a δ-ccws module is also a δ-ccws module; (2) Let R be a left δ-V -ring. Then R is a δ-ccws module iff R is a ccws-module iff R is extending; (3) Any nonsingular homomorphic image of a δ-ccws-module is also a δ-ccws-module; (4) We characterize nonsingular δ-V -rings in which all nonsingular modules are δ-ccws.

RAD-SUPPLEMENTING MODULES

  • Ozdemir, Salahattin
    • 대한수학회지
    • /
    • 제53권2호
    • /
    • pp.403-414
    • /
    • 2016
  • Let R be a ring, and let M be a left R-module. If M is Rad-supplementing, then every direct summand of M is Rad-supplementing, but not each factor module of M. Any finite direct sum of Rad-supplementing modules is Rad-supplementing. Every module with composition series is (Rad-)supplementing. M has a Rad-supplement in its injective envelope if and only if M has a Rad-supplement in every essential extension. R is left perfect if and only if R is semilocal, reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is Rad-supplementing if and only if R is reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is ample Rad-supplementing. M is ample Rad-supplementing if and only if every submodule of M is Rad-supplementing. Every left R-module is (ample) Rad-supplementing if and only if R/P(R) is left perfect, where P(R) is the sum of all left ideals I of R such that Rad I = I.

ON A GENERALIZATION OF ⊕-CO-COATOMICALLY SUPPLEMENTED MODULES

  • FIGEN ERYILMAZ;ESRA OZTURK SOZEN
    • 호남수학학술지
    • /
    • 제45권1호
    • /
    • pp.146-159
    • /
    • 2023
  • In this paper, we define ⊕δ-co-coatomically supplemented and co-coatomically δ-semiperfect modules as a strongly notion of ⊕-co-coatomically supplemented and co-coatomically semiperfect modules with the help of Zhou's radical. We say that a module A is ⊕δ-co-coatomically supplemented if each co-coatomic submodule of A has a δ-supplement in A which is a direct summand of A. And a module A is co-coatomically δ-semiperfect if each coatomic factor module of A has a projective δ-cover. Also we define co-coatomically amply δ-supplemented modules and we examined the basic properties of these modules. Furthermore, we give a ring characterization for our modules. In particular, a ring R is δ-semiperfect if and only if each free R-module is co-coatomically δ-semiperfect.

ON A CLASS OF PERFECT RINGS

  • Olgun, Arzu;Turkmen, Ergul
    • 호남수학학술지
    • /
    • 제42권3호
    • /
    • pp.591-600
    • /
    • 2020
  • A module M is called ss-semilocal if every submodule U of M has a weak supplement V in M such that U∩V is semisimple. In this paper, we provide the basic properties of ss-semilocal modules. In particular, it is proved that, for a ring R, RR is ss-semilocal if and only if every left R-module is ss-semilocal if and only if R is semilocal and Rad(R) ⊆ Soc(RR). We define projective ss-covers and prove the rings with the property that every (simple) module has a projective ss-cover are ss-semilocal.

A RECENT GENERALIZATION OF COFINITELY INJECTIVE MODULES

  • Esra OZTURK SOZEN
    • 호남수학학술지
    • /
    • 제45권3호
    • /
    • pp.397-409
    • /
    • 2023
  • Let R be an associative ring with identity and M be a left R-module. In this paper, we define modules that have the property (δ-CE) ((δ-CEE)), these are modules that have a δ-supplement (ample δ-supplements) in every cofinite extension which are generalized version of modules that have the properties (CE) and (CEE) introduced in [6] and so a generalization of Zöschinger's modules with the properties (E) and (EE) given in [23]. We investigate various properties of these modules along with examples. In particular we prove these: (1) a module M has the property (δ-CEE) if and only if every submodule of M has the property (δ-CE); (2) direct summands of a module that has the property (δ-CE) also have the property (δ-CE); (3) each factor module of a module that has the property (δ-CE) also has the property (δ-CE) under a special condition; (4) every module with composition series has the property (δ-CE); (5) over a δ-V -ring a module M has the property (δ-CE) if and only if M is cofinitely injective; (6) a ring R is δ-semiperfect if and only if every left R-module has the property (δ-CE).

ON A GENERALIZATION OF ⊕-SUPPLEMENTED MODULES

  • Turkmen, Burcu Nisanci;Davvaz, Bijan
    • 호남수학학술지
    • /
    • 제41권3호
    • /
    • pp.531-538
    • /
    • 2019
  • We introduce FI-${\oplus}$-supplemented modules as a proper generalization of ${\oplus}$-supplemented modules. We prove that; (1) every finite direct sum of FI-${\oplus}$-supplemented R-modules is an FI-${\oplus}$-supplemented R-module for any ring R ; (2) if every left R-module is FI-${\oplus}$-supplemented over a semilocal ring R, then R is left perfect; (3) if M is a finitely generated torsion-free uniform R-module over a commutative integrally closed domain such that every direct summand of M is FI-${\oplus}$-supplemented, then M is a direct sum of cyclic modules.