• Title/Summary/Keyword: supervised and unsupervised classification

Search Result 100, Processing Time 0.022 seconds

Field and remote acquisition of hyperspectral information for classification of riverside area materials (현장 및 원격 초분광 정보 계측을 통한 하천 수변공간 재료 구분)

  • Shin, Jaehyun;Seong, Hoje;Rhee, Dong Sop
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1265-1274
    • /
    • 2021
  • The analysis of hyperspectral characteristics of materials near the South Han River has been conducted using riverside area measurements by drone installed hyperspectral sensors. Each spectrum reflectance of the riverside materials were compared and analyzed which were consisted of grass, concrete, soil, etc. To verify the drone installed hyperspectral measurements, a ground spectrometer was deployed for field measurements and comparisons for the materials. The comparison results showed that the riverside materials had their unique hyperspectral band characteristics, and the field measurements were similar to the remote sensing data. For the classification of the riverside area, the K-means clustering method and SVM classification method were utilized. The supervised SVM method showed accurate classification of the riverside area than the unsupervised K-means method. Using classification and clustering methods, the inherent spectral characteristic for each material was found to classify the riverside materials of hyperspectral images from drones.

Recognition of damage pattern and evolution in CFRP cable with a novel bonding anchorage by acoustic emission

  • Wu, Jingyu;Lan, Chengming;Xian, Guijun;Li, Hui
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.421-433
    • /
    • 2018
  • Carbon fiber reinforced polymer (CFRP) cable has good mechanical properties and corrosion resistance. However, the anchorage of CFRP cable is a big issue due to the anisotropic property of CFRP material. In this article, a high-efficient bonding anchorage with novel configuration is developed for CFRP cables. The acoustic emission (AE) technique is employed to evaluate the performance of anchorage in the fatigue test and post-fatigue ultimate bearing capacity test. The obtained AE signals are analyzed by using a combination of unsupervised K-means clustering and supervised K-nearest neighbor classification (K-NN) for quantifying the performance of the anchorage and damage evolutions. An AE feature vector (including both frequency and energy characteristics of AE signal) for clustering analysis is proposed and the under-sampling approaches are employed to regress the influence of the imbalanced classes distribution in AE dataset for improving clustering quality. The results indicate that four classes exist in AE dataset, which correspond to the shear deformation of potting compound, matrix cracking, fiber-matrix debonding and fiber fracture in CFRP bars. The AE intensity released by the deformation of potting compound is very slight during the whole loading process and no obvious premature damage observed in CFRP bars aroused by anchorage effect at relative low stress level, indicating the anchorage configuration in this study is reliable.

Metabolomic Analysis of Ethyl Acetate and Methanol Extracts of Blueberry (Ethyl Acetate와 Methanol을 이용한 블루베리 추출물 대사체 분석)

  • Jo, Young-Hee;Kim, Sugyeong;Kwon, Da-Ae;Lee, Hong Jin;Choi, Hyung-Kyoon;Auh, Joong-Hyuck
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.3
    • /
    • pp.419-424
    • /
    • 2014
  • Metabolite profiling of blueberry (cultivar "Spartan") was performed by extraction using different solvents, methanol and ethyl acetate, through metabolomic analysis using LC-MS/MS. Unsupervised classification method (PCA) and supervised prediction model (OPLS-DA) provided good categorization of metabolites according to the extraction solvents. Metabolites of the anthocyanin family, including delphinidin hexoside, delphinidin, 5-O-feruloylquinic acid, malvidin hexoside, malvidin-3-arabinoside, petunidin-3-arabinoside, and petunidin hexoside, were mainly detected in methanol fractions, whereas those of the flavonoid family, including chlorogenic acid, chlorogenic acid dimer, 6,8-di-C-arabinopyranosyl-luteolin, and luteolin were successfully prepared in the ethyl acetate fraction. Thus, metabolomic analysis of blueberry extracts allows for the simple profiling of whole and distinctive metabolites for future applications.

Medical Image Analysis Using Artificial Intelligence

  • Yoon, Hyun Jin;Jeong, Young Jin;Kang, Hyun;Jeong, Ji Eun;Kang, Do-Young
    • Progress in Medical Physics
    • /
    • v.30 no.2
    • /
    • pp.49-58
    • /
    • 2019
  • Purpose: Automated analytical systems have begun to emerge as a database system that enables the scanning of medical images to be performed on computers and the construction of big data. Deep-learning artificial intelligence (AI) architectures have been developed and applied to medical images, making high-precision diagnosis possible. Materials and Methods: For diagnosis, the medical images need to be labeled and standardized. After pre-processing the data and entering them into the deep-learning architecture, the final diagnosis results can be obtained quickly and accurately. To solve the problem of overfitting because of an insufficient amount of labeled data, data augmentation is performed through rotation, using left and right flips to artificially increase the amount of data. Because various deep-learning architectures have been developed and publicized over the past few years, the results of the diagnosis can be obtained by entering a medical image. Results: Classification and regression are performed by a supervised machine-learning method and clustering and generation are performed by an unsupervised machine-learning method. When the convolutional neural network (CNN) method is applied to the deep-learning layer, feature extraction can be used to classify diseases very efficiently and thus to diagnose various diseases. Conclusions: AI, using a deep-learning architecture, has expertise in medical image analysis of the nerves, retina, lungs, digital pathology, breast, heart, abdomen, and musculo-skeletal system.

Analysis Process based on Modify K-means for Efficiency Improvement of Electric Power Data Pattern Detection (전력데이터 패턴 추출의 효율성 향상을 위한 변형된 K-means 기반의 분석 프로세스)

  • Jung, Se Hoon;Shin, Chang Sun;Cho, Yong Yun;Park, Jang Woo;Park, Myung Hye;Kim, Young Hyun;Lee, Seung Bae;Sim, Chun Bo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.1960-1969
    • /
    • 2017
  • There have been ongoing researches to identify and analyze the patterns of electric power IoT data inside sensor nodes to supplement the stable supply of power and the efficiency of energy consumption. This study set out to propose an analysis process for electric power IoT data with the K-means algorithm, which is an unsupervised learning technique rather than a supervised one. There are a couple of problems with the old K-means algorithm, and one of them is the selection of cluster number K in a heuristic or random method. That approach is proper for the age of standardized data. The investigator proposed an analysis process of selecting an automated cluster number K through principal component analysis and the space division of normal distribution and incorporated it into electric power IoT data. The performance evaluation results show that it recorded a higher level of performance than the old algorithm in the cluster classification and analysis of pitches and rolls included in the communication bodies of utility poles.

Anomaly Data Detection Using Machine Learning in Crowdsensing System (크라우드센싱 시스템에서 머신러닝을 이용한 이상데이터 탐지)

  • Kim, Mihui;Lee, Gihun
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.475-485
    • /
    • 2020
  • Recently, a crowdsensing system that provides a new sensing service with real-time sensing data provided from a user's device including a sensor without installing a separate sensor has attracted attention. In the crowdsensing system, meaningless data may be provided due to a user's operation error or communication problem, or false data may be provided to obtain compensation. Therefore, the detection and removal of the abnormal data determines the quality of the crowdsensing service. The proposed methods in the past to detect these anomalies are not efficient for the fast-changing environment of crowdsensing. This paper proposes an anomaly data detection method by extracting the characteristics of continuously and rapidly changing sensing data environment by using machine learning technology and modeling it with an appropriate algorithm. We show the performance and feasibility of the proposed system using deep learning binary classification model of supervised learning and autoencoder model of unsupervised learning.

Distinct cell subtype composition using gene expression data in oral cancer (유전자 발현 데이터 기반 구강암에서의 세포 조성 차이 분석)

  • Rhee, Je-Keun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.8
    • /
    • pp.59-65
    • /
    • 2019
  • There are various subtypes of cells in cancer tissues, but it is hard to confirm their composition experimentally. Here, we estimated the cell composition of each sample from gene expression data by using statistical machine learning approaches, two different regression models and investigated whether the cell composition was different between cancer and normal tissue. As a result, we found that CD8 T cell and Neutrophil were increased in oral cancer tissues compared to normal tissues. In addition, we applied t-SNE, which is one of the unsupervised learning, to verify whether normal tissue and oral cancer tissue can be clustered by the derived cell composition. Moreover, we showed that it is possible to predict oral cancer and normal tissue by several supervised classification algorithms. The study would help to improve the understanding of the immune cell infiltration at oral cancer.

Deep Learning-based Abnormal Behavior Detection System for Dementia Patients (치매 환자를 위한 딥러닝 기반 이상 행동 탐지 시스템)

  • Kim, Kookjin;Lee, Seungjin;Kim, Sungjoong;Kim, Jaegeun;Shin, Dongil;shin, Dong-kyoo
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.133-144
    • /
    • 2020
  • The number of elderly people with dementia is increasing as fast as the proportion of older people due to aging, which creates a social and economic burden. In particular, dementia care costs, including indirect costs such as increased care costs due to lost caregiver hours and caregivers, have grown exponentially over the years. In order to reduce these costs, it is urgent to introduce a management system to care for dementia patients. Therefore, this study proposes a sensor-based abnormal behavior detection system to manage dementia patients who live alone or in an environment where they cannot always take care of dementia patients. Existing studies were merely evaluating behavior or evaluating normal behavior, and there were studies that perceived behavior by processing images, not data from sensors. In this study, we recognized the limitation of real data collection and used both the auto-encoder, the unsupervised learning model, and the LSTM, the supervised learning model. Autoencoder, an unsupervised learning model, trained normal behavioral data to learn patterns for normal behavior, and LSTM further refined classification by learning behaviors that could be perceived by sensors. The test results show that each model has about 96% and 98% accuracy and is designed to pass the LSTM model when the autoencoder outlier has more than 3%. The system is expected to effectively manage the elderly and dementia patients who live alone and reduce the cost of caring.

A Novel of Data Clustering Architecture for Outlier Detection to Electric Power Data Analysis (전력데이터 분석에서 이상점 추출을 위한 데이터 클러스터링 아키텍처에 관한 연구)

  • Jung, Se Hoon;Shin, Chang Sun;Cho, Young Yun;Park, Jang Woo;Park, Myung Hye;Kim, Young Hyun;Lee, Seung Bae;Sim, Chun Bo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.10
    • /
    • pp.465-472
    • /
    • 2017
  • In the past, researchers mainly used the supervised learning technique of machine learning to analyze power data and investigated the identification of patterns through the data mining technique. Data analysis research, however, faces its limitations with the old data classification and analysis techniques today when the size of electric power data has increased with the possible real-time provision of data. This study thus set out to propose a clustering architecture to analyze large-sized electric power data. The clustering process proposed in the study supplements the K-means algorithm, an unsupervised learning technique, for its problems and is capable of automating the entire process from the collection of electric power data to their analysis. In the present study, power data were categorized and analyzed in total three levels, which include the row data level, clustering level, and user interface level. In addition, the investigator identified K, the ideal number of clusters, based on principal component analysis and normal distribution and proposed an altered K-means algorithm to reduce data that would be categorized as ideal points in order to increase the efficiency of clustering.

Analysis of Burn Severity in Large-fire Area Using SPOT5 Images and Field Survey Data (SPOT5영상과 현장조사자료를 융합한 대형산불지역의 피해강도 분석)

  • Won, Myoungsoo;Kim, Kyongha;Lee, Sangwoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.2
    • /
    • pp.114-124
    • /
    • 2014
  • For classifying fire damaged areas and analyzing burn severity of two large-fire areas damaged over 100 ha in 2011, three methods were employed utilized supervised classification, unsupervised classification and Normalized Difference Vegetation Index (NDVI). In this paper, the post-fire imageries of SPOT were used to compute the Maximum Likelihood (MLC), Minimum Distance (MIN), ISODATA, K-means, NDVI and to evaluate large-scale patterns of burn severity from 1 m to 5 m spatial resolutions. The result of the accuracy verification on burn severity from satellite images showed that average overall accuracy was 88.38 % and the Kappa coefficient was 0.8147. To compare the accuracy between burn severity and field survey at Uljin and Youngduk, two large fire sites were selected as study areas, and forty-four sampling plots were assigned in each study area for field survey. The burn severities of the study areas were estimated by analyzing burn severity (BS) classes from SPOT images taken one month after the occurrence of the fire. The applicability of composite burn index (CBI) was validated with a correlation analysis between field survey data and burn severity classified by SPOT5, and by their confusion matrix. The result showed that correlation between field survey data and BS by SPOT5 were closely correlated in both Uljin (r = -0.544 and p<0.01) and Youngduk (r = -0.616 and p<0.01). Thus, this result supported that the proposed burn severity analysis is an adequate method to measure burn severity of large fire areas in Korea.