• 제목/요약/키워드: superlinear problem

검색결과 11건 처리시간 0.022초

BIFURCATION PROBLEM FOR THE SUPERLINEAR ELLIPTIC OPERATOR

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제20권3호
    • /
    • pp.333-341
    • /
    • 2012
  • We investigate the number of solutions for the superlinear elliptic bifurcation problem with Dirichlet boundary condition. We get a theorem which shows the existence of at least $k$ weak solutions for the superlinear elliptic bifurcation problem with boundary value condition. We obtain this result by using the critical point theory induced from invariant linear subspace and the invariant functional.

POSITIVE SOLUTIONS OF SUPERLINEAR AND SUBLINEAR BOUNDARY VALUE PROBLEMS

  • Gatica, Juan A.;Kim, Yun-Ho
    • Korean Journal of Mathematics
    • /
    • 제25권1호
    • /
    • pp.37-43
    • /
    • 2017
  • We study the existence of positive solutions of second order nonlinear separated boundary value problems of superlinear as well as sublinear type without imposing monotonicity restrictions on the problem. The type of problem investigated cannot be analyzed using the linearization about the trivial solution because either it does not exist (the sublinear case) or is trivial (the superlinear case). The results follow from a known fixed point theorem by noticing that the concavity of the solutions provides an important condition for the applicability of the fixed point result.

ON SUPERLINEAR p(x)-LAPLACIAN-LIKE PROBLEM WITHOUT AMBROSETTI AND RABINOWITZ CONDITION

  • Bin, Ge
    • 대한수학회보
    • /
    • 제51권2호
    • /
    • pp.409-421
    • /
    • 2014
  • This paper deals with the superlinear elliptic problem without Ambrosetti and Rabinowitz type growth condition of the form: $$\{-div\((1+\frac{|{\nabla}u|^{p(x)}}{\sqrt{1+|{\nabla}u|^{2p(x)}}}})|{\nabla}u|^{p(x)-2}{\nabla}u\)={\lambda}f(x,u)\;a.e.\;in\;{\Omega}\\u=0,\;on\;{\partial}{\Omega}$$ where ${\Omega}{\subset}R^N$ is a bounded domain with smooth boundary ${\partial}{\Omega}$, ${\lambda}$ > 0 is a parameter. The purpose of this paper is to obtain the existence results of nontrivial solutions for every parameter ${\lambda}$. Firstly, by using the mountain pass theorem a nontrivial solution is constructed for almost every parameter ${\lambda}$ > 0. Then we consider the continuation of the solutions. Our results are a generalization of that of Manuela Rodrigues.

A DUAL ALGORITHM FOR MINIMAX PROBLEMS

  • HE SUXIANG
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.401-418
    • /
    • 2005
  • In this paper, a dual algorithm, based on a smoothing function of Bertsekas (1982), is established for solving unconstrained minimax problems. It is proven that a sequence of points, generated by solving a sequence of unconstrained minimizers of the smoothing function with changing parameter t, converges with Q-superlinear rate to a Kuhn-Thcker point locally under some mild conditions. The relationship between the condition number of the Hessian matrix of the smoothing function and the parameter is studied, which also validates the convergence theory. Finally the numerical results are reported to show the effectiveness of this algorithm.

EXISTENCE OF POSITIVE SOLUTIONS FOR GENERALIZED LAPLACIAN PROBLEMS WITH A PARAMETER

  • Kim, Chan-Gyun
    • East Asian mathematical journal
    • /
    • 제38권1호
    • /
    • pp.33-41
    • /
    • 2022
  • In this paper, we study singular Dirichlet boundary value problems involving ϕ-Laplacian. Using fixed point index theory, the existence of positive solutions is established under the assumption that the nonlinearity f = f(u) has a positive falling zero and is either superlinear or sublinear at u = 0.

A KANTOROVICH-TYPE CONVERGENCE ANALYSIS FOR THE QUASI-GAUSS-NEWTON METHOD

  • Kim, S.
    • 대한수학회지
    • /
    • 제33권4호
    • /
    • pp.865-878
    • /
    • 1996
  • We consider numerical methods for finding a solution to a nonlinear system of algebraic equations $$ (1) f(x) = 0, $$ where the function $f : R^n \to R^n$ is ain $x \in R^n$. In [10], a quasi-Gauss-Newton method is proposed and shown the computational efficiency over SQRT algorithm by numerical experiments. The convergence rate of the method has not been proved theoretically. In this paper, we show theoretically that the iterate $x_k$ obtained from the quasi-Gauss-Newton method for the problem (1) actually converges to a root by Kantorovich-type convergence analysis. We also show the rate of convergence of the method is superlinear.

  • PDF

A SMOOTHING NEWTON METHOD FOR NCP BASED ON A NEW CLASS OF SMOOTHING FUNCTIONS

  • Zhu, Jianguang;Hao, Binbin
    • Journal of applied mathematics & informatics
    • /
    • 제32권1_2호
    • /
    • pp.211-225
    • /
    • 2014
  • A new class of smoothing functions is introduced in this paper, which includes some important smoothing complementarity functions as its special cases. Based on this new smoothing function, we proposed a smoothing Newton method. Our algorithm needs only to solve one linear system of equations. Without requiring the nonemptyness and boundedness of the solution set, the proposed algorithm is proved to be globally convergent. Numerical results indicate that the smoothing Newton method based on the new proposed class of smoothing functions with ${\theta}{\in}(0,1)$ seems to have better numerical performance than those based on some other important smoothing functions, which also demonstrate that our algorithm is promising.

ANALYSIS OF SMOOTHING NEWTON-TYPE METHOD FOR NONLINEAR COMPLEMENTARITY PROBLEMS

  • Zheng, Xiuyun
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1511-1523
    • /
    • 2011
  • In this paper, we consider the smoothing Newton method for the nonlinear complementarity problems with $P_0$-function. The proposed algorithm is based on a new smoothing function and it needs only to solve one linear system of equations and perform one line search per iteration. Under the condition that the solution set is nonempty and bounded, the proposed algorithm is proved to be convergent globally. Furthermore, the local superlinearly(quadratic) convergence is established under suitable conditions. Preliminary numerical results show that the proposed algorithm is very promising.