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A SMOOTHING NEWTON METHOD FOR NCP BASED ON A

NEW CLASS OF SMOOTHING FUNCTIONS†

JIANGUANG ZHU∗ AND BINBIN HAO

Abstract. A new class of smoothing functions is introduced in this pa-

per, which includes some important smoothing complementarity functions
as its special cases. Based on this new smoothing function, we proposed a
smoothing Newton method. Our algorithm needs only to solve one linear
system of equations. Without requiring the nonemptyness and bounded-

ness of the solution set, the proposed algorithm is proved to be globally
convergent. Numerical results indicate that the smoothing Newton method
based on the new proposed class of smoothing functions with θ ∈ (0, 1)
seems to have better numerical performance than those based on some

other important smoothing functions, which also demonstrate that our al-
gorithm is promising.
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1. Introduction

Consider the following nonlinear complementarity problem (NCP): to find a
vector x ∈ ℜn such that

x ≥ 0, F (x) ≥ 0, xTF (x) = 0. (1)

where Fi : ℜn → ℜ(i = 1, . . . , n) is continuously differentiable with F :=
(F1, F2, . . . , Fn)

T . The NCP has been studied extensively due to its many ap-
plications in operation research, engineering and economics(see, for example,
[1, 2]).

For the NCPs, many solution methods, such as interior point methods [3, 4],
smoothing methods [5, 6, 7]. In this paper, we are interested in smoothing
Newton methods for solving NCP. This method is to reformulate NCP as a
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system of smoothing equations by using smoothing function, and to solve the
equation at each iteration by Newton method. Smoothing function plays an
important role in smoothing Newton algorithms. Up to now, many smoothing
functions have been proposed: the Kanzow smoothing function [8], Chen-Harker-
Kanzow-Smale smoothing function [5], Chen-Mangasarian smoothing function
[9], Huang-Han-Chen smoothing function [10], and so on. Generally, the con-
struction of a smoothing function is based on a so-called NCP-function: An
NCP-function is a mapping ϕ : ℜ2 → ℜ having the property

ϕ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.

Many NCP-functions have been studied. Among them, the Fischer-Burmeister
function and the minimum function are the most prominent NCP-functions,
which are defined respectively by

ϕ(a, b) :=
√
a2 + b2 − a− b, ∀(a, b) ∈ ℜ2,

ϕ(a, b) := min{a, b}, ∀(a, b) ∈ ℜ2.

By smoothing the symmetric perturbed Fischer-Burmeister function, Huang,
Han, Xu and Zhang [11] proposed the following smoothing function:

ϕ(µ, a, b) := (1+µ)(a+ b)−
√
(a+ µb)2 + (b+ µa)2 + 2µ2, ∀(µ, a, b) ∈ ℜ3, (2)

By smoothing the symmetric perturbed minimum function, Huang et. al. [10]
proposed the following smoothing function:

ϕ(µ, a, b) := (1 + µ)(a+ b)−
√

(1− µ)2(a− b)2 + 2µ2, ∀(µ, a, b) ∈ ℜ3. (3)

Recently, by combining the Fischer-Burmeister function and the minimum func-
tion, Liu and Wu [12] proposed the following function:

ϕθ(a, b) := a+ b−
√
θ(a− b)2 + (1− θ)(a2 + b2), θ ∈ [0, 1], ∀(a, b) ∈ ℜ2.

Motivated by [10, 11, 12], we introduce in this paper the following smoothing
function:

ϕθ(µ, a, b)

=(1 + µ)(a+ b)−
√

θ(1− µ)2(a− b)2 + (1− θ)[(a+ µb)2 + (b+ µa)2] + 2µ2.
(4)

where θ is a given constant with θ ∈ [0, 1]. It is easy to see that when θ = 1, ϕθ

reduces to the smoothing function defined by (1.3); and when θ = 0, ϕθ reduces
to smoothing function defined by (1.2). Thus, the class of smoothing functions
defined by (4) contains the smoothing function (1.2) and (1.3) as special cases.

Motivated by the above mentioned work, by using the symmetric perturbed
technique and the idea of convex combination, we propose a new class of smooth-
ing functions. We also investigate a smoothing Newton method to solve the NCP
based on a new class of smoothing functions. Our algorithm has the following
nice properties: (a) Our algorithm needs only to solve one linear system of equa-
tions and perform one line search per iteration. (b) Here we give the boundedness
of the level set and hence the iteration sequence is bounded and thus there exists
at least one accumulation point. We do not need to assume the nonemptyness
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and boundedness of the solution set of NCP (1.1), although this assumption
is widely used in the literature. (c) The function we use is a parametric class
of smoothing functions containing some important smoothing complementarity
functions as its special cases. We can adjust the two parameter to get better
effect in practice. The numerical experiments implicate that the algorithm is
efficient and promising.

The organization of this paper is as follows. In section 2, we recall some useful
definitions and give some properties of new smoothing function. In section 3,
we propose a smoothing Newton algorithm. Convergence results are analyzed
in section 4. Some preliminary computational results are reported in section 5.
Some words about notation are needed. All vectors are column vectors. ℜn

+

and ℜn
++ denote the nonnegative and positive orthants of ℜn, respectively. We

define N = {1, 2, . . . , n}.

2. Preliminaries

In this section, we recall some useful definitions and give some properties of
the new smoothing function defined by (4).

Definition 2.1. A matrix M ∈ ℜn×n is said to be a P0-matrix if all its principal
minors are non-negative.

Definition 2.2. A function F : ℜn → ℜn is said to be a P0-function if for all
x, y ∈ ℜn with x ̸= y, there exists an index i0 ∈ N such that

xi0 ̸= yi0 , (xi0 − yi0) [Fi0(x)− Fi0(y)] ≥ 0.

The following lemma gives some properties of the smoothing function ϕθ(·, ·, ·)
defined by (4). Its proof is obviously.

Lemma 2.3. Let (µ, a, b) ∈ ℜ3 and ϕθ(µ, a, b) be defined by (4). Then,
(i) ϕθ(0, a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.
(ii) ϕθ(µ, a, b) is continuously differentiable for all points in ℜ3 different from
(0, c, c) for arbitrary c ∈ ℜ. In particular, ϕθ(µ, a, b) is continuously differen-
tiable for arbitrary (µ, a, b) ∈ ℜ3 with µ ̸= 0.
(iii) ϕθ(µ, a, b) is semismooth on ℜ++ ×ℜ2.

Let z := (µ, x) ∈ ℜ++ ×ℜn and

H(z) :=

(
eµ − 1
Φθ(µ, x)

)
, (5)

where

Φθ(µ, x) :=

 ϕθ(µ, x1, F1(x))
...

ϕθ(µ, xn, Fn(x))

 . (6)

By (5) and Lemma 2.1, we known that solving NCP (1) is equivalent to solveH(z) =
0.
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Define merit function h : ℜ++ ×ℜn → ℜ+ by

h(z) := ∥H(z)∥2. (7)

We also know that the NCP (1) is equivalent to the following equation:

h(z) = 0. (8)

For simplicity, we denote

hθ(µ, a, b) =
√
θ(1− µ)2(a− b)2 + (1− θ)[(a+ µb)2 + (b+ µa)2] + 2µ2.

Lemma 2.4. Let H : ℜn+1 → ℜn+1 and Φθ : ℜn+1 → ℜn be defined by (5) and
(6), respectively. Then:
(i) Φθ is continuously differentiable at any z = (µ, x) ∈ ℜn+1 with µ ̸= 0.
(ii) H is continuously differentiable at any z = (µ, x) ∈ ℜ++ × ℜn with its
Jacobian

H ′(z) =

(
eµ 0
v(z) w(z)

)
, (9)

where

v(z) := vec {xi + Fi(x)− (dµ)i, i ∈ N} ,
w(z) := D1(z) +D2(z)F

′(x),

D1(z) := diag {1 + µ− (d1)i, i ∈ N} ,
D2(z) := diag {1 + µ− (d2)i, i ∈ N} ,

with

(dµ)i =
2xiFi(x)− θx2

i − θF 2
i (x) + (x2

i + F 2
i (x)− 2θxiFi(x) + 2)µ

hθ(µ, xi, Fi(x))
, i ∈ N,

(d1)i =
xi + µFi(x)− θ(Fi(x) + µxi) + µ[Fi(x) + µxi − θ(xi + µFi(x))]

hθ(µ, xi, Fi(x))
, i ∈ N,

(d2)i =
Fi(x) + µxi − θ(xi + µFi(x)) + µ[xi + µFi(x)− θ(Fi(x) + µxi)]

hθ(µ, xi, Fi(x))
, i ∈ N.

If F is a P0−function, then the matrix H ′(z) is nonsingular on ℜ++ ×ℜn.

Proof. It is easy to see that Φθ is continuously differentiable at any z = (µ, x) ∈
ℜn+1 with µ ̸= 0.

Next we prove (ii). It follows from (i) and F is continuously differentiable
that H is continuously differentiable at any z = (µ, x) ∈ ℜ++ × ℜn. From the
definition of H(z) (5), it follows that (9) holds. For all i ∈ N ,

hθ(µ, xi, Fi(x)) =
√

[xi + µFi(x)− θ(Fi(x) + µxi)]2 + (1− θ2)(Fi(x) + µxi)2 + 2µ2

=
√

[Fi(x) + µxi − θ(xi + µFi(x))]2 + (1− θ2)(xi + µFi(x))2 + 2µ2.



A smoothing Newton method for NCP based on a new class of smoothing functions 215

By the above equation, we have

− 1 <
xi + µFi(x)− θ(Fi(x) + µxi)

hθ(µ, xi, Fi(x))
< 1 and

− 1 <
Fi(x) + µxi − θ(xi + µFi(x))

hθ(µ, xi, Fi(x))
< 1.

(10)

Since

(d1)i =
xi + µFi(x)− θ(Fi(x) + µxi)

hθ(µ, xi, Fi(x))
+ µ

Fi(x) + µxi − θ(xi + µFi(x))

hθ(µ, xi, Fi(x))
,

(d2)i =
Fi(x) + µxi − θ(xi + µFi(x))

hθ(µ, xi, Fi(x))
+ µ

xi + µFi(x)− θ(Fi(x) + µxi)

hθ(µ, xi, Fi(x))
,

which together with (2.6), we have

|(d1)i| < 1 + µ and |(d2)i| < 1 + µ, for all i ∈ N.

Thus,

0 < 1 + µ− (d1)i < 2 + 2µ, 0 < 1 + µ− (d2)i < 2 + 2µ,

which imply that D1(z) and D2(z) are positive diagonal matrices for any (µ, x) ∈
ℜ++ × ℜn. Since F is a P0-function, then F ′(x) is a P0-matrix for any x ∈ ℜn

by Lemma 5.4 in [13]. In view of the fact that D2(z) is a positive diagonal
matrix, by a straightforward calculation we have that all principal minors of the
matrix D2(z)F

′(x) are nonnegative. By Definition 2.1, we know that the matrix
D2(z)F

′(x) is a P0-matrix. Hence, by Theorem 3.1 in [14], the matrix D1(z) +
D2(z)F

′(x) is obviously nonsingular, which implies that H ′(z) is nonsingular.
�

3. Algorithm

In this section we shall present a smoothing Newton method for NCP and
prove that the proposed algorithm is well defined.
Algorithm 3.1. ( Smoothing Newton algorithm)

S0 Choose δ ∈ (0, 1), σ ∈ (0,
1

2
) and µ > 0.

Take γ ∈ (0, 1) such that 2γµ < 1.
Let µ0 = µ, x0 ∈ ℜn be an arbitrary vector, z0 = (µ0, x

0), z = (µ, 0), k := 0.
S1 Termination criterion. If ∥H(zk)∥ = 0, stop.
S2 Compute ∆zk := (∆µk,∆xk) ∈ ℜn+1 by

H(zk) +H ′(zk)∆zk = eµkβkz, (11)

where βk = β(zk) is defined by β(z) := γmin{1, h(z)}.
S3 Let mk is the smallest nonnegative integer such that

h(zk + δmk∆zk) ≤ [1− 2σ(1− 2γµ)δmk ]h(zk). (12)
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Let λk := δmk .
S4 Set zk+1 = zk + λk∆zk and k := k + 1. Go to S1.

The following theorem proves that Algorithm 3.1 is well-defined and generates
an infinite sequence. Define the set

Ω := {z = (µ, x) ∈ ℜ+ ×ℜn : µ ≥ β(z)µ} . (13)

Theorem 3.1. Suppose F is a continuously differentiable P0-function. Then,
Algorithm 3.1 is well-defined and generates infinite sequence {zk = (µk, x

k)}
with µk ∈ ℜ++ and zk ∈ Ω for all k ≥ 0 .

Proof. If µk > 0, since F is a continuously differentiable P0-function, then it
follows from Lemma 2.2 that the matrix H ′(zk) is nonsingular. Hence, step S2
is well-defined at the k−th iteration. By (11) we have

eµk − 1 + eµk∆µk = eµkβkµ,

which implies

∆µk = βkµ+
1− eµk

eµk
≥ βkµ− µk,

where the second inequality follows from 1−eµ

eµ ≥ −µ for any µ > 0.
Hence, by the first equation of (3.1), we can get

µk+1 = µk + λk∆µk ≥ µk + λk(βkµ− µk) = (1− λk)µk + λkβkµ > 0.

From (2.1) and (2.4), we have

eµk − 1 ≤
√

h(zk). (14)

Let Rk(α) = h(zk+α∆zk)−h(zk)−αh′(zk)∆zk. It is easy to see that R(α) =

o(α). When h(z) > 1, β(z) = γ < γ
√

h(z) = γ∥H(z)∥, while h(z) < 1, β(z) =

γh(z) ≤ γ
√

h(z) = γ∥H(z)∥, thus
β(z) ≤ γ∥H(z)∥. (15)

Then by (3.1), (3.2), (3.4) and (3.5), we have

h(zk + α∆zk) =Rk(α) + h(zk) + αh′(zk)∆zk

=Rk(α) + h(zk) + 2αH(zk)TH ′(zk)∆zk

=Rk(α) + h(zk) + 2αH(zk)T (−H(zk) + eµkβkµ)

=(1− 2α)h(zk) + 2αH(zk)T eµkβkµ+ o(α)

≤(1− 2α)h(zk) + 2α∥H(zk)∥(eµk − 1)βkµ+ 2α∥H(zk)∥βkµ+ o(α)

≤(1− 2α)h(zk) + 2αγµh(zk) + 2αγµh(zk) + o(α)

=[1− 2(1− 2γµ)α]h(zk) + o(α)

=[1− 2σ(1− 2γµ)α]h(zk)− 2(1− σ)(1− 2γµ)αh(zk) + o(α).

Since σ ∈ (0,
1

2
) and 2γµ < 1, then(1− σ)(1− 2γµ)h(zk) > 0. For α sufficiently

small, we can get h(zk +α∆zk) ≤ [1− 2σ(1− 2γµ)α]h(zk), this shows that step
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S3 is well-defined at the k-th iteration. Therefore, Algorithm 3.1 is well-defined
and generates an infinite sequence {zk = (µk, x

k)} with µk ∈ ℜ++.
Next, we will prove zk ∈ Ω for k ≥ 0. This can be obtained by inductive

method. Firstly, it is evident from the choice of the starting point z0 ∈ Ω.
Secondly, suppose that zk ∈ Ω, then by (13) we have µk ≥ β(zk)µ, then

µk+1 − β(zk+1)µ =µk + λkβ(z
k)µ+ λk

1− eµk

eµk
− β(zk+1)µ

≥(1− λk)µk + λkβ(z
k)µ− β(zk+1)µ

≥(1− λk)β(z
k)µ+ λkβ(z

k)µ− β(zk+1)µ

=
(
β(zk)− β(zk+1)

)
µ

≥0.

�

4. Convergence of Algorithm 3.1

In this section, we discuss the global convergence and local superlinear con-
vergence of Algorithm 3.1. We need the following Lemma 4.1 which can be
founded in [15].

Lemma 4.1. Let ε > 0 and the function ϕ : ℜ2 → ℜ be defined by

ϕ(a, b) := a+ b−
√
a2 + b2 + ε.

Let {ak}, {bk} ⊆ ℜ be any two sequences such that ak, bk → +∞ or ak → −∞
or bk → −∞. Then |ϕ(ak, bk)| → +∞.

Lemma 4.2. Let ϕ̃θ be defined by

ϕ̃θ(µ, a, b) = a+ b−
√
θ(a− b)2 + (1− θ)(a2 + b2) + 2µ2, ∀(a, b) ∈ ℜ2, µ > 0.

Assume that {ak}, {bk} ⊆ ℜ be any two sequences such that ak, bk → +∞ or

ak → −∞ or bk → −∞. Then |ϕ̃θ(µk, a
k, bk)| → +∞.

Proof. (i) Suppose that ak → −∞. If {bk} is bounded, then the result holds
obviously; else if bk → +∞, we have −ak > 0 and bk > 0 for all k sufficiently
large, and hence,√

θ(ak − bk)2 + (1− θ)((ak)2 + (bk)2) + 2µ2
k − bk

≥
√
θ(bk)2 + (1− θ)(bk)2 + 2µ2

k − bk > 0,

which, together with −ak → +∞, implies that ϕ̃θ → −∞. Thus |ϕ̃θ| → +∞.

(ii) For the case of bk → −∞. By using the symmetry of function ϕ̃θ about
ak, bk, we know the result holds.

(iii) Suppose that ak → +∞ and bk → +∞. Thus, for sufficiently large k,√
θ(ak − bk)2 + (1− θ)((ak)2 + (bk)2) + 2µ2

k ≤
√
(ak)2 + (bk)2 + 2µ2

k,
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hence,

ak + bk −
√

θ(ak − bk)2 + (1− θ)((ak)2 + (bk)2) + 2µ2
k

≥ak + bk −
√

(ak)2 + (bk)2 + 2µ2
k.

By Lemma 4.1, we know that

|ϕ̃θ(µk, a
k, bk)| = ak + bk −

√
θ(ak − bk)2 + (1− θ)((ak)2 + (bk)2) + 2µ2

k → +∞.

�

Lemma 4.3. Let F be a continuous P0-function and Φθ(µ, x) be defined by (6).
For any µ > 0 and c > 0, define the level set

Lµ(c) := {x ∈ ℜn : ∥Φθ(µ, x)∥ ≤ c} . (16)

Then, for any 0 < µ1 ≤ µ2 and c > 0 , the set L(c) := ∪µ1≤µ≤µ2Lµ(c) is
bounded.

Proof. Suppose, to the contrary, that Lµ(c) is unbounded. Then for some
fixed c > 0, we can find a sequence {(µk, x

k)} such that µ1 ≤ µk ≤ µ2 and
∥Φθ(µk, x

k)∥ ≤ c, ∥xk∥ → ∞.
Since the sequence {xk} is unbounded, then the index set J := {i ∈ N :

{xk
i } is unbounded } is nonempty. Without loss of generality, we can assume

that {|xk
i | → ∞} for all i ∈ J . Let the sequence {x̃k} be defined by

x̃k =

{
0 if i ∈ J
xk
i if i ̸∈ J.

(17)

Then, {x̃k} is bounded. Note that F is a P0-function, by Definition 2.2, we have

0 ≤max
i∈N

(xk
i − x̃i

k)
[
Fi(x

k)− Fi(x̃
k)
]

=max
i∈J

xk
i

[
Fi(x

k)− Fi(x̃
k)
]

=xk
j

[
Fj(x

k)− Fj(x̃
k)
]
,

(18)

where j is one of the indices for which the max is attained, and j is assumed,
without loss of generality, to be independent of k, we obtained |xk

j | → ∞.
We consider the following two cases:
case 1: xk

j → +∞. In this case, since {Fj(x̃
k)} is bounded by the continuity of

Fj , we deduce from Equation (4.3) Fj(x
k) 9 −∞. Since µ1 ≤ µk ≤ µ2, we have

µkx
k
j + Fj(x

k) → +∞, xk
j + µkFj(x

k) → +∞.

By Lemma 4.2, we know that

|Φθ,j(µk, x
k)| → ∞.
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case 2: xk
j → −∞. In this case, since {Fj(x̃

k)} is bounded by the continuity of Fj ,

we deduce from Equation (4.3) Fj(x
k) ≤ Fj(x̃

k) for any k. Since µ1 ≤ µk ≤ µ2,
we have

µkx
k
j + Fj(x

k) → −∞, xk
j + µkFj(x

k) → −∞,

which, together with Lemma 4.2, gives

|Φθ,j(µk, x
k)| → ∞.

In either case, we obtained ∥Φθ(µk, x
k)∥ → +∞, which contradicts with

∥Φθ(µk, x
k)∥ ≤ c. This completes the proof. �

Corollary 4.3 Suppose that F is a P0-function and µ > 0. Then the function
∥Φθ(µ, x)∥ is coercive, i.e., lim∥x∥→∞ ∥Φθ(µ, x)∥ = +∞.

Theorem 4.4. Suppose F is a continuously differentiable P0-function, and the
sequence {zk = (µk, x

k)} is generated by Algorithm 3.1. Then the sequence {zk}
is bounded and any accumulation point z∗ = (µ∗, x

∗) of the sequence {zk} is a
solution of H(zk) = 0.

Proof. Since h(zk) is monotonically decreasing and bounded from below by zero,
it then follows that the sequence ∥Φθ(z

k)∥ is bounded. By Corollary 4.3, we im-
mediately obtain {xk} is bounded. Note that the boundedness of {h(zk)} implies
the boundedness of µk. So {zk} is bounded. Without loss of generality, suppose
zk → z∗. Then h(zk) → h∗, β(zk) → β∗. If h(zk) = 0, we obtain the desired
result. Now, we prove h∗ = 0 by contradiction. In fact, if h∗ ̸= 0, then h∗ > 0,
then β∗ = γmin{1, h∗} > 0, and µ∗ ≥ β∗µ. It follows from Lemma 2.2 that
H ′(z∗) is nonsingular. By the continuity of H ′(z), there exists a closed neigh-
borhood N(z∗) of z∗ such that for any z ∈ N(z∗), we have µ ∈ ℜ++ and H ′(z)
is invertible. So, for all sufficiently large k, zk ∈ N(z∗) and H ′(zk) is invertible.
Let ∆zk = (∆µk,∆xk) ∈ ℜ×ℜn be the unique solution of the following system:

H(zk) +H ′(zk)∆zk = eµkβkz,

It follows from the continuity of H and the definition of β(.) that {µk} and {βk}
converge to µ∗ and β∗, respectively. That together with (3.2), implies that

lim
k→∞

λk = 0.

Thus, for sufficiently large k, the stepsize λ̂k := λk

δ does not satisfy (3.2), then

h(zk + λ̂k∆zk) >
[
1− 2σ(1− 2γµ)λ̂k

]
h(zk), (19)

which implies that

h(zk + λ̂k∆zk)− h(zk)

λ̂k

> −2σ(1− 2γµ)h(zk). (20)

H(z∗)TH ′(z∗)∆z∗ = lim
k→∞

H(zk)TH ′(zk)∆zk

= lim
k→∞

H(zk)T (−H(zk) + eµkβkµ)
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= lim
k→∞

(
−h(zk) +H(zk)T (eµk − 1)βkµ+H(zk)Tβkµ

)
(21)

≤ lim
k→∞

(
−h(zk) + 2γµ∥H(zk)∥2

)
=(2γµ− 1)h(z∗).

Taking limits on both sides of the inequalities (4.5), from (4.6) we have

−2σ(1− 2γµ)h(z∗) ≤ 2H(z∗)TH ′(z∗)∆z∗

≤ 2(2γµ− 1)h(z∗).

This indicates that −σ(1 − 2γµ) ≤ 2γµ − 1, since 2γµ < 1, we have σ ≥ 1,
which contradicts σ < 1

2 . Thus, h(z
∗) = 0 and µ∗ = 0. Hence z∗ = (µ∗, x

∗) is a
solution of H(µ, x) = 0. �

Theorem 4.5. Suppose that F is a continuously differentiable P0-function. Let
z∗ be an accumulation point of the iteration sequence {zk} generated by Algo-
rithm 3.1. If all V ∈ ∂H(z∗) are nonsingular, then:
(1) λk ≡ 1, for all zk sufficiently close to z∗;
(2) the whole sequence {zk} converges to z∗;
(3) ∥zk+1−z∗∥ = o(∥zk−z∗∥)(or ∥zk+1−z∗∥ = O(∥zk−z∗∥2) if F ′ is Lipschitz
continuous on ℜn).

Proof. The proof is similar to the one given in [16], Theorem 3.2. �

5. Numerical experiments

In this section, we report some numerical results of Algorithm 3.1. All exper-
iments are done using a PC with CPU of 1.6 GHz and RAM of 512 MB, and all
codes are finished in MATLAB 7.5. Throughout our computational experiments,
the parameters used in the algorithm are chosen as

δ = 0.5, σ = 0.06, γ = 0.001, µ = 1.0.

In our implementation, we use ∥H(zk)∥ ≤ 10−6 as the stopping rule.

Example 5.1. Kojima-Shindo Problem. This test problem was used by Pang
and Gabriel [17], Mangasarian and Solodov [18], Kanzow [19], and Jiang and Qi
[20] with four variables. Let

F1(x) = 3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6,

F2(x) = 2x2
1 + x1 + x2

2 + 10x3 + 2x4 − 2,

F3(x) = 3x2
1 + x1x2 + 2x2

2 + 2x3 + 9x4 − 9,

F4(x) = x2
1 + 3x2

2 + 2x3 + 3x4 − 3.

Table 1 gives the results for this example with starting points a1 = (0, 0, 0, 1)T ,
a2 = (1,−2, 1,−2)T , a3 = (1, 2, 6, 8)T .



A smoothing Newton method for NCP based on a new class of smoothing functions 221

Table 1. Numerical results for Examples 5.1 to 5.4

a1 a2 a3

EX θ IT NF CPU IT NF CPU IT NF CPU

5.1 0 9 14 0.060319 10 16 0.063772 10 18 0.070342
0.25 8 13 0.053006 10 15 0.055583 11 19 0.080942
0.5 8 13 0.053622 10 15 0.056014 7 8 0.050825
0.75 8 13 0.071610 9 12 0.055434 7 8 0.058709
1 - - - 11 18 0.076599 8 10 0.051401

5.2 0 10 23 0.063856 16 81 0.112669 14 33 0.084473
0.25 12 32 0.069427 13 36 0.080319 12 30 0.067422
0.5 13 35 0.066243 11 22 0.061275 12 29 0.070216
0.75 12 33 0.065865 11 19 0.062824 11 23 0.071821
1 14 38 0.089583 - - - - - -

5.3 0 21 45 0.072896 24 51 0.063188 15 24 0.065481
0.25 8 20 0.055192 15 27 0.051503 7 11 0.043257
0.5 7 12 0.050989 17 31 0.062504 6 7 0.040183
0.75 6 8 0.040433 18 33 0.063182 18 33 0.055909
1 23 45 0.082194 23 56 0.075995 24 60 0.074259

5.4 0 13 26 0.051879 15 39 0.075145 24 98 0.083144
0.25 10 20 0.048800 12 25 0.070647 21 96 0.080437
0.5 11 24 0.052045 9 15 0.055815 23 86 0.081092
0.75 10 22 0.048697 12 31 0.053310 14 29 0.053238
1 15 42 0.057394 14 37 0.075407 20 70 0.072042

Example 5.2. Josephy Problem. This test problem was used by Dirkse and
Ferris [22] with four variables. Let

F1(x) = 3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6,

F2(x) = 2x2
1 + x1 + x2

2 + 3x3 + 2x4 − 2,

F3(x) = 3x2
1 + x1x2 + 2x2

2 + 2x3 + 3x4 − 1,

F4(x) = x2
1 + 3x2

2 + 2x3 + 3x4 − 3.

Table 1 gives the results for this example with starting points a1 = (2,−2,−2,−2)T ,
a2 = (2, 3, 4, 6)T , a3 = (0, 2, 0, 6)T .

Example 5.3. Mathiesen Problem. This test problem was used by Pang and
Gabriel [17] with four variables, which was also tested by Kanzow [19] . Let

F1(x) = −x2 + x3 + x4,

F2(x) = x1 − α(b2x3 + b3x4)/x2,

F3(x) = b2 − x1 − (1− α)(b2x3 + b3x4)/x3,

F4(x) = b3 − x1,
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where α = 0.75, b2 = 1, b3 = 2. Table 1 gives the results for this exam-
ple with starting points a1 = (0.5, 0.5, 0.5, 2)T , a2 = (2,−2,−2,−2)T , a3 =
(0,−2,−2, 0)T .

Example 5.4. HS 34 Problem. This test problem was from the book of Hock
and Schittkowski [21]: Their Karush-Kuhn-Tucker (KKT) optimality conditions
lead to complementarity problems of dimensions 8. Let

F1(x) = −1 + x4e
x1 + x6,

F2(x) = −x4 + x5e
x2 + x7,

F3(x) = −x5 + x8,

F4(x) = x2 − ex1 ,

F5(x) = x3 − ex2 ,

F6(x) = 100− x1,

F7(x) = 100− x2,

F8(x) = 10− x3.

Table 1 gives the results with starting points a1 = (−1,−1,−1, 1, 1, 1, 1, 1)T ,
a2 = (0, 0, 0, 1, 1, 1, 1, 1)T , a3 = (1, 1, 1,−10,−10,−10,−10,−10)T .

In Table 1, IT denotes the numbers of iteration; NF denotes the numbers of
function value’s evaluation; CPU denotes the CPU time for solving the under-
lying problem in second; and − denotes the algorithm fails to find the optimizer
in the sense that the iteration numbers are larger than 1000.

Table 1 shows that not all the best numerical results occur in the case of
θ = 0(in this case, the smoothing function is proposed by Huang et. al. in
[11]) or θ = 1 (in this case, the smoothing function is proposed by Huang et.
al. in [10]). These demonstrate that the new smoothing function introduced
in this paper is worth investigating. The Figures 1 and 2 below plot the corre-
sponding convergence of merit function h(zk) versus the iteration number. From
the two figures, when θ = 0.5 and θ = 0.75, h(zk) has a faster decrease than
θ = 0 and θ = 1. These also demonstrate that the new smoothing function
introduced in this paper is worth investigating. Numerical experiments also
demonstrate the feasibility and efficiency of the new algorithm.This new pro-
posed class of complementarity functions have great advantage because we can
adjust the parameter θ to obtain an optimal solution to NCP.
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