• Title/Summary/Keyword: superlinear conditions

Search Result 11, Processing Time 0.018 seconds

AFFINE INVARIANT LOCAL CONVERGENCE THEOREMS FOR INEXACT NEWTON-LIKE METHODS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.393-406
    • /
    • 1999
  • Affine invariant sufficient conditions are given for two local convergence theorems involving inexact Newton-like methods. The first uses conditions on the first Frechet-derivative whereas the second theorem employs hypotheses on the second. Radius of con-vergence as well as rate of convergence results are derived. Results involving superlinear convergence and known to be true for inexact Newton methods are extended here. Moreover we show that under hypotheses on the second Frechet-derivation our radius of convergence results are derived. Results involving superlinear convergence and known to be true or inexact Newton methods are extended here. Moreover we show that under hypotheses on the second Frechet-derivative our radius of conver-gence is larger than the corresponding one in [10]. This allows a wider choice for the initial guess. A numerical example is also pro-vided to show that our radius of convergence is larger then the one in [10].

A DUAL ALGORITHM FOR MINIMAX PROBLEMS

  • HE SUXIANG
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.401-418
    • /
    • 2005
  • In this paper, a dual algorithm, based on a smoothing function of Bertsekas (1982), is established for solving unconstrained minimax problems. It is proven that a sequence of points, generated by solving a sequence of unconstrained minimizers of the smoothing function with changing parameter t, converges with Q-superlinear rate to a Kuhn-Thcker point locally under some mild conditions. The relationship between the condition number of the Hessian matrix of the smoothing function and the parameter is studied, which also validates the convergence theory. Finally the numerical results are reported to show the effectiveness of this algorithm.

INEXACT-NEWTON METHOD FOR SOLVING OPERATOR EQUATIONS IN INFINITE-DIMENSIONAL SPACES

  • Liu Jing;Gao Yan
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.351-360
    • /
    • 2006
  • In this paper, we develop an inexact-Newton method for solving nonsmooth operator equations in infinite-dimensional spaces. The linear convergence and superlinear convergence of inexact-Newton method under some conditions are shown. Then, we characterize the order of convergence in terms of the rate of convergence of the relative residuals. The present inexact-Newton method could be viewed as the extensions of previous ones with same convergent results in finite-dimensional spaces.

OSCILLATION OF HIGHER ORDER STRONGLY SUPERLINEAR AND STRONGLY SUBLINEAR DIFFERENCE EQUATIONS

  • Grace, Said R.;Han, Zhenlai;Li, Xinhui
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.455-464
    • /
    • 2014
  • We establish some new criteria for the oscillation of mth order nonlinear difference equations. We study the case of strongly superlinear and the case of strongly sublinear equations subject to various conditions. We also present a sufficient condition for every solution to be asymptotic at ${\infty}$ to a factorial expression $(t)^{(m-1)}$.

LOCAL CONVERGENCE THEOREMS FOR NEWTON METHODS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.345-360
    • /
    • 2001
  • Affine invariant sufficient conditions are given for two local convergence theorems involving inexact Newton-like methods. The first uses conditions on the first Frechet-derivative whereas the second theorem employs hypotheses on the mth(m≥2 an integer). Radius of convergence as well as rate of convergence results are derived. Results involving superlinear convergence and known to be true for inexact Newton methods are extended here. Moreover, we show that under hypotheses on the mth Frechet-derivative our radius of convergence can sometimes be larger than the corresponding one in [10]. This allows a wider choice for the initial guess. A numerical example is also provided to show that our radius of convergence is larger than the one in [10].

INFINITELY MANY SOLUTIONS FOR FRACTIONAL SCHRÖDINGER EQUATION WITH SUPERQUADRATIC CONDITIONS OR COMBINED NONLINEARITIES

  • Timoumi, Mohsen
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.825-844
    • /
    • 2020
  • We obtain infinitely many solutions for a class of fractional Schrödinger equation, where the nonlinearity is superquadratic or involves a combination of superquadratic and subquadratic terms at infinity. By using some weaker conditions, our results extend and improve some existing results in the literature.

ANALYSIS OF SMOOTHING NEWTON-TYPE METHOD FOR NONLINEAR COMPLEMENTARITY PROBLEMS

  • Zheng, Xiuyun
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1511-1523
    • /
    • 2011
  • In this paper, we consider the smoothing Newton method for the nonlinear complementarity problems with $P_0$-function. The proposed algorithm is based on a new smoothing function and it needs only to solve one linear system of equations and perform one line search per iteration. Under the condition that the solution set is nonempty and bounded, the proposed algorithm is proved to be convergent globally. Furthermore, the local superlinearly(quadratic) convergence is established under suitable conditions. Preliminary numerical results show that the proposed algorithm is very promising.

AN AFFINE SCALING INTERIOR ALGORITHM VIA CONJUGATE GRADIENT AND LANCZOS METHODS FOR BOUND-CONSTRAINED NONLINEAR OPTIMIZATION

  • Jia, Chunxia;Zhu, Detong
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.173-190
    • /
    • 2011
  • In this paper, we construct a new approach of affine scaling interior algorithm using the affine scaling conjugate gradient and Lanczos methods for bound constrained nonlinear optimization. We get the iterative direction by solving quadratic model via affine scaling conjugate gradient and Lanczos methods. By using the line search backtracking technique, we will find an acceptable trial step length along this direction which makes the iterate point strictly feasible and the objective function nonmonotonically decreasing. Global convergence and local superlinear convergence rate of the proposed algorithm are established under some reasonable conditions. Finally, we present some numerical results to illustrate the effectiveness of the proposed algorithm.

A HYBRID METHOD FOR NCP WITH $P_0$ FUNCTIONS

  • Zhou, Qian;Ou, Yi-Gui
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.653-668
    • /
    • 2011
  • This paper presents a new hybrid method for solving nonlinear complementarity problems with $P_0$-functions. It can be regarded as a combination of smoothing trust region method with ODE-based method and line search technique. A feature of the proposed method is that at each iteration, a linear system is only solved once to obtain a trial step, thus avoiding solving a trust region subproblem. Another is that when a trial step is not accepted, the method does not resolve the linear system but generates an iterative point whose step-length is defined by a line search. Under some conditions, the method is proven to be globally and superlinearly convergent. Preliminary numerical results indicate that the proposed method is promising.