• Title/Summary/Keyword: supercritical CO2

Search Result 413, Processing Time 0.026 seconds

Experimental study on heat transfer characteristics of supercritical carbon dioxide natural circulation

  • Wang, Pengfei;Ding, Peng;Li, Wenhuai;Xie, Rongshun;Duan, Chengjie;Hong, Gang;Zhang, Yaoli
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.867-876
    • /
    • 2022
  • An experimental study has been conducted to investigate the heat transfer characteristics of supercritical carbon dioxide (sCO2) uniformly heated in the horizontal circular smooth tube. The results illustrated that there was a significant difference in heat transfer between the top wall and bottom wall due to the buoyancy. Bulk flow acceleration cannot be negligible in the high heat flux region, which leads to heat transfer deterioration. A new heat transfer correlation is proposed, in which the buoyancy parameter and bulk flow acceleration have been taken into account. The new correlation and six classic correlations for sCO2 are examined in horizontal tubes. The comparison indicates that the new correlation has a better performance for sCO2 flowing through a horizontal heating tube under natural circulation conditions. For example, 94.9% of the calculated results using the new heat transfer correlation were within ±30% of the experimental results while only 87.9% of that using the Jackson correlation (the best of the six) were within the same error bands.

Recovery of High Unsaturated Fatty Acid from Squid Processing Wastes using Supercritical Carbon Dioxide Extraction Method (초임계 이산화탄소 추출법을 이용한 오징어 가공 부산물로부터 고도불포화 지방산 회수)

  • KANG Seong-Sil;KIM Byung-Jun;CHUN Byung-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.217-222
    • /
    • 1999
  • A squid viscera oil contains a high content of EPA, DHA, and other valuable polyunsaturated fatty acids. The extractions of squid viscera oil by supercritical carbon dioxide both with/without $3\%$ (v/v) ethanol were performed in a semicontinuous flow extractor at 8.3 to 13.8 MPa and 25 to $50^{\circ}C$. When ethanol was added to $SC-CO_2$, the extraction ratio of lipid increased. The extracts contained high content of unsaturated oils like DHA and EPA. The highest extraction yield of lipid from squid viscera oil extracted by supercritical carbon dioxide was obtained at 12.4 MPa and $40^{\circ}C$ with/without entrainer. The main fatty acids of squid viscera oil extracted by supercritical carbon dioxide were myristric acid (14:0), palmitic acid (16:0), palmitoleic acid (16:1), oleic acid (18:1), arachidic acid (20:0), eicosapentaenoic acid (20:5), and docosahaxaenoic acid (22:6).

  • PDF

Antimicrobial Activity of Extracted by Supercritical Fluid from Origanum vulgare, Cinnamomum cassia, Chamaecyparis obtusa and Scutellariae baicalensis (오레가노, 육계, 편백 및 황금의 초임계 유체 추출물의 항균 활성)

  • Kim, Woo-Jin;Cho, Jun-Young;Choi, Chang-Suk;Yoon, Gee-Sun;Lee, Won-Kyu;Ryu, Yeon-Woo
    • KSBB Journal
    • /
    • v.23 no.2
    • /
    • pp.147-152
    • /
    • 2008
  • The variety of functional plants has an attention for new natural food preservation and natural antiseptic development. The extracts from functional plants with various methods (ethanol extraction, hot water extraction and supercritical fluid extraction) tested antimicrobial activity against 10 strains including the pathogenic and food poisoning bacteria, the yeast and fungi. The antimicrobial activities of supercritical fluid extracts were shown higher than ethanol extract and hot water extract when tested with disc-diffusion method and minimum inhibitory concentration (MIC). Antimicrobial activity of supercritical fluid extract was two times higher than ethanol extract in Cinnaonomum cassia. In addition, the supercritical fluid extractions of Chamaecyparis obtuas and the C. cassia showed the higher yield than Origanum vulgare and Scutellariae baicalensis. The supercritical fluid extract of C. cassia showed an antimicrobial activity against all strains tested. The supercritical fluid extract of S. baicalensis showed strong antimicrobial activity on Listeria monocytogenes. Supercritical fluid extraction of O. vulgare and C. obtuas showed strong antimicrobial activity on Salmonella typhimuriium. In MIC test, C. obtuas was shown the best natural material for the preparation of natural antimicrobial agent by supercritical fluid extraction. In conclusion, these results suggest that supercritical fluid extraction technique was effective to obtain functional ingredient with higher antimicrobial activity in the development of new antimicrobial reagent from natural materials.

Effect of the lubrication oil on heat transfer and pressure drop characteristics of supercritical carbon dioxide in a microfin tube (마이크로핀관내 냉동기유가 초임계 이산화탄소의 열전달과 압력강하에 미치는 영향)

  • Ku, Hak-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1440-1446
    • /
    • 2012
  • This paper presents an experimental study of heat transfer and pressure drop characteristics of supercritical carbon dioxide with PAG inside a horizontal microfin tube. Heat transfer coefficient and pressure drop gradients were measured at 10 MPa in pressure and 520 kg/$m^2s$ in mass flux with variation of PAG mass concentration from 0.06% to 2.26%. The tendencies of both heat transfer and frictional pressure drop characteristics show the same as those of pure $CO_2$ up to 0.3% in PAG mass concentration. In case of 2.26% in PAG mass concentration, measured heat transfer coefficients showed 50% lower than those of pure $CO_2$ near the pseudocritical temperature and measured frictional pressure drop gradients show 1.6 times higher in comparison with those of pure $CO_2$ at $60^{\circ}C$ in $CO_2$ bulk temperature.

RESEARCH ACTIVITIES ON A SUPERCRITICAL PRESSURE WATER REACTOR IN KOREA

  • Bae, Yoon-Yeong;Jang, Jin-Sung;Kim, Hwan-Yeol;Yoon, Han-Young;Kang, Han-Ok;Bae, Kang-Mok
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.273-286
    • /
    • 2007
  • This paper presents the research activities performed to date for the development of a supercritical pressure water-cooled reactor (SCWR) in Korea. The research areas include a conceptual design of an SCWR with an internal flow recirculation, a reactor core conceptual design, a heat transfer test with supercritical $CO_2$, an adaptation of an existing safety analysis code to the supercritical pressure condition, and an evaluation of candidate materials through a corrosion study. Methods to reduce the cladding temperature are introduced from two different perspectives, namely, thermal-hydraulics and core neutronics. Briefly described are the results of an experiment on the heat transfer at a supercritical pressure, an experiment that is essential for the analysis of the subchannels of fuel assemblies and the analysis of a system safety. An existing system code has been adapted to SCWR conditions, and the process of a first-hand validation is presented. Finally, the corrosion test results of the candidate materials for an SCWR are introduced.

Numerical analysis of Poiseuille-Rayleigh-Bénard convection in supercritical carbon dioxide

  • Wang, Zhipeng;Xu, Hong;Chen, Chong;Hong, Gang;Song, Zhenguo;Zhang, Yaoli
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3540-3550
    • /
    • 2022
  • The supercritical carbon dioxide (S-CO2) Brayton cycle is an important energy conversion technology for the fourth generation of nuclear energy. Since the printed circuit heat exchanger (PCHE) used in the S-CO2 Brayton cycle has narrow channels, Rayleigh-Bénard (RB) convection is likely to exist in the tiny channels. However, there are very few studies on RB convection in supercritical fluids. Current research on RB convection mainly focuses on conventional fluids such as water and air that meet the Boussinesq assumption. It is necessary to study non-Boussinesq fluids. PRB convection refers to RB convection that is affected by horizontal incoming flow. In this paper, the computational fluid dynamics simulation method is used to study the PRB convection phenomenon of non-Boussinesq fluid-supercritical carbon dioxide. The result shows that the inlet Reynolds number (Re) of the horizontal incoming flow significantly affects the PRB convection. When the inlet Re remains unchanged, with the increase of Rayleigh number (Ra), the steady-state convective pattern of the fluid layer is shown in order: horizontal flow, local traveling wave, traveling wave convection. If Ra remains unchanged, as the inlet Re increases, three convection patterns of traveling wave convection, local traveling wave, and horizontal flow will appear in sequence. To characterize the relationship between traveling wave convection and horizontal incoming flow, this paper proposes the relationship between critical Reynolds number and relative Rayleigh number (r).

Development of a correlation on the convective heat transfer of supercritical pressure $CO_2$ vertically upward flowing in a circular tube (원형관에서 수직상향유동 초임계압 $CO_2$의 대류열전달 상관식 개발)

  • Kang, Deog-Ji;Kim, Hwan-Yeol;Bae, Yun-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.292-295
    • /
    • 2008
  • In a SCWR (SuperCritical pressure Water cooled Reactor), the coolant temperature initially at below the pseudo-critical temperature at the bottom of a reactor core increases as the coolant flows upward through the sub-channels of the fuel assemblies, and it finally becomes higher than the pseudo-critical temperature when it leaves the reactor core. At certain conditions, heat transfer deterioration occurs near the pseudo-critical temperature and it may cause a drastic rise of the fuel surface temperature resulting a fuel failure. Therefore, an accurate estimation of the heat transfer coefficient is very important for the thermal-hydraulic design of a reactor core. An experiment on heat transfer to the vertically upward flowing $CO_2$ at a supercritical pressure in a circular tube were performed at KAERI. The internal diameter of the test section is 6.32 mm, which corresponds to the hydraulic diameter of a sub-channel in the conceptional design proposed by KAERI. The test range of the mass flux is 285 to 1200 kg/m$^2$s and the maximum heat flux is 170 kW/m$^2$. The inlet pressure is maintained at 8.12 MPa, which is 1.1 times the critical pressure. A new correlation, which covers both the normal and deterioration heat transfer regimes was proposed and compared with the estimations by exiting correlations.

  • PDF

The optimization for the straight-channel PCHE size for supercritical CO2 Brayton cycle

  • Xu, Hong;Duan, Chengjie;Ding, Hao;Li, Wenhuai;Zhang, Yaoli;Hong, Gang;Gong, Houjun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1786-1795
    • /
    • 2021
  • Printed Circuit Heat Exchanger (PCHE) is a widely used heat exchanger in the supercritical carbon dioxide (sCO2) Brayton cycle because it can work under high temperature and pressure, and has been a hot topic in Next Generation Nuclear Plant (NGNP) projects for use as recuperators and condensers. Most previous studies focused on channel structures or shapes. However, no clear advancement has so far been seen in the allover size of the PCHE. In this paper, we proposed an optimal size of the PCHE with a fixed volume. Two boundary conditions of PCHE were simulated, respectively. When the volume of PCHE was fixed, the heat transfer rate and pressure loss were picked as the optimization objectives. The Pareto front was obtained by the Multi-objective optimization procedure. We got the optimized number of PCHE channels under two different boundary conditions from the Pareto front. The comprehensive performance can be increased by 5.3% while holding in the same volume. The numerical results from this study can be used to improve the design of PCHE with straight channels.

ANALYTICAL AND EXPERIMENTAL PROGRAM OF SUPERCRITICAL HEAT TRANSFER RESEARCH AT THE UNIVERSITY OF OTTAWA

  • Groeneveld, Dionysius C.;Tavoularis, Stavros;Raogudla, Prassada;Yang, Sun-Kyu;Leung, Laurence K.H.
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.107-116
    • /
    • 2008
  • The present paper describes the preliminary compilation, assessment and examination of the supercritical heat transfer(SCHT) database. The availability and reliability of the SCHT data are discussed. Similarities in thermodynamic supercritical properties and SCHT behaviour of water, $CO_{2}$ and R-134a have been examined and some tentative conclusions are made. Finally, the future experimental and analytical program at the University of Ottawa is described.

ASSESSMENT OF GAS COOLED FAST REACTOR WITH INDIRECT SUPERCRITICAL $CO_2$ CYCLE

  • Hejzlar, P.;Dostal, V.;Driscoll, M.J.;Dumaz, P.;Poullennec, G.;Alpy, N.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.109-118
    • /
    • 2006
  • Various indirect power cycle options for a helium cooled gas cooled fast reactor (GFR) with particular focus on a supercritical $CO_2(SCO_2)$ indirect cycle are investigated as an alternative to a helium cooled direct cycle GFR. The balance of plant (BOP) options include helium-nitrogen Brayton cycle, supercritical water Rankine cycle, and $SCO_2$ recompression Brayton power cycle in three versions: (1) basic design with turbine inlet temperature of $550^{\circ}C$, (2) advanced design with turbine inlet temperature of $650^{\circ}C$ and (3) advanced design with the same turbine inlet temperature and reduced compressor inlet temperature. The indirect $SCO_2$ recompression cycle is found attractive since in addition to easier BOP maintenance it allows significant reduction of core outlet temperature, making design of the primary system easier while achieving very attractive efficiencies comparable to or slightly lower than, the efficiency of the reference GFR direct cycle design. In addition, the indirect cycle arrangement allows significant reduction of the GFR &proximate-containment& and the BOP for the $SCO_2$ cycle is very compact. Both these factors will lead to reduced capital cost.