• Title/Summary/Keyword: superconducting transformer

검색결과 172건 처리시간 0.025초

Double pancake 코일 내부의 절연구성 연구 (Dielectric composition of the double pancake coil interior)

  • 정종만;백승명;곽동순;이정원;김상현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계합동학술대회 논문집
    • /
    • pp.210-213
    • /
    • 2002
  • For insulation design of the superconducting transformer, many types of insulation tests should be carried out. To clarify the components of insulation for superconducting transformer, there are main four parts as 1ike that turn-to-turn interior of each primary and secondary windings, layer-to-layer between primary and secondary windings, and winding to grounded structures. The insulation components should meet the required withstand voltage of the system and enough safety factors must included. As the fundamental insulation characteristics, we tested surface flashover voltage of spacer that would place between the coils and would take the role of both cooling duct and insulator. The structure of spacer in practice vary depending on coil type, in this work we considered double pancake coil for the superconducting transformer. In this study we tested flashover voltages of several arrangement of spacer.

  • PDF

Hybrid형 초전도 한류기의 동시퀜치 유도방안 (A method for simultaneous quench of hybrid type superconducting fault current limiter)

  • 최효상;현옥배;김혜림;박권배;황시돌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.916-917
    • /
    • 2001
  • We investigated the properties of a hybrid type superconducting fault current limiter (SFCL), which consists of a transformer with multiple secondary windings and resistive $YBa_2Cu_3O_7$ (YBCO) thin film stripes. The secondary windings of the transformer were coupled with each other, and a superconducting current limiting unit of YBCO stripes was connected to each of them as a switch. Simple connection in series of SFCL units tends to produce imbalance in power among the units due to slight differences in quench current. In current design, magnetic coupling between the SFCL units provides a solution to power dissipation imbalance, inducing simultaneous quench by current redistribution in the YBCO films.

  • PDF

삼상전력계통의 비대칭고장전류 저감을 위한 초전도한류기의 전류제한특성 (Current Limiting Characteristics of Superconducting Fault Current Limiter for Reduction of Unsymmetrical Fault Current in a Three-Phase Power System)

  • 김영민;임성훈;황종선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 춘계학술대회 논문집
    • /
    • pp.8-8
    • /
    • 2010
  • In this paper, the limiting characteristics of the fault current in a power system with a superconducting fault current limiter(SFCL) applied into neutral line of main transformer in a distribution power line were analyzed. The SFCL applied into the neutral line of main transformer power system can limit the unsymmetrical fault current from the single-line ground fault or the double-line ground fault. In addition, it could be decreased a number of SFCL and a load. This method could be expected to reduction of a power loss in the neutral line, because of a neutral line current is zero in ordinary times.

  • PDF

초전도 한류기를 주변압기 접지선에 설치시 배전계통의 순간전압품질 분석 (Voltage Quality Analysis in Power Distribution System with Superconducting Fault Current Limiter at Grounding Line)

  • 문종필
    • 전기학회논문지P
    • /
    • 제62권4호
    • /
    • pp.159-163
    • /
    • 2013
  • In this paper, voltage quality improvement is analyzed in case of Superconducting Fault Current Limiter (SFCL) installed in grounding line of main transformer in power distribution system. First, a resistive-type SFCL model is used. Next, Korean power distribution system is modeled. Finally, when SFCL is installed in the starting point of feeder and grounding line of main transformer, voltage qualities are evaluated according to various fault locations and resistance values of SFCL using PSCAD/EMTDC. The voltage quality results in case of grounding line are compared with the voltage in case of feeder.

MTR 중성점 접지에 초전도 전류제한기 적용시 지락과전류계전기 동작 분석 (Analysis on the Protective Coordination on Neutral Line of Main Transformer in Power Distribution Substation with Superconducting Fault Current Limiter)

  • 김진석;임성훈;문종필;김재철;현옥배
    • 전기학회논문지
    • /
    • 제58권11호
    • /
    • pp.2089-2094
    • /
    • 2009
  • The fault current has increased due to growth of distributed generations for the large power demand in power distribution system. To solve some problem such as excess of the circuit breaker's cut-off ratings, the superconducting fault current limiter(SFCL) has been progressed. However, the operational characteristics of the relay is changed by SFCL. Therefore, the proper impedance for the SFCL should be selected to keep protective coordination with the SFCL when SFCL is introduced on the neutral line of main transformer in distribution system. In this paper, the proper normal conducting resistance was suggested to solve the problem in case of the protection coordination with SFCL.

고온초전도변압기의 특성시험 (Test of an High Temperature Superconducting Power Transformer)

  • 이희준;차귀수;이지광;김우석;한송엽;류경우;최경달
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권9호
    • /
    • pp.572-577
    • /
    • 2000
  • This paper describes the test results of a single phase 3kVA high temperature superconducting power transformer. The tapes are made with Bi-2223 and have silver alloy as the matrix. Four double pancake windings are used. Among them two double pancake windings are connected in series for high voltage winding and the others are connected in parallel for low voltage winding. The rated voltage and current of primary winding and secondary winding are 220/110V. 13.7/27.3A. Fundamental characteristics are obtained through short circuit and no load test. The over load capability and characteristics are investigated.

  • PDF

삼상 분리형 자속커플링 전류제한기의 턴 수의 따른 전류제한 특성 (Characteristics according to turn ratio of Separated Three-Phase Flux-Coupling Type Superconducting Fault Current Limiter(SFCL))

  • 김용진;두호익;두승규;김민주;이동혁;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.344-345
    • /
    • 2009
  • The flux-coupling type superconducting fault current limiter(SFCL) is composed of a series transformer and superconducting unit of the YBCO coated conductor. The primary and secondary coils in the transformer were wound in series each other through an iron core and the YBCO coated conductor was connected with secondary coil in parallel. In a normal condition, the flux generated from a primary coil is cancelled out by its structure and the zero resistance of the YBCO thin films. When a fault occurs, the resistance of the YBCO coated conductor was generated and the fault current was limited by the SFCL. In this paper, we investigated the fault current limiting characteristics according to turn ratio in the flux-coupling type SFCL. The experiment results that the fault current limiting characteristics was improved according to turn ratio.

  • PDF

자속커플링 SFCL의 사고전류 변화에 따른 전류제한특성 분석 (Characteristics according to increase of the fault current level of Flux-Coupling Type Superconducting Fault Current Limiter(SFCL))

  • 김용진;한병성;두호익;박충렬;두승규;김민주;하승룡
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.288-288
    • /
    • 2008
  • The flux-coupling type superconducting fault current limiter(SFCL) is composed of a series transformer and superconducting unit of the YBCO thin films. The primary and secondary coils in the transformer were wound in series each other through an iron core and the YBCO thin film was connected with secondary coil in parallel. In a normal condition, the flux generated from a primary coil is cancelled out by its structure and the zero resistance of the YBCO thin films. When a fault occurs, the resistance of the YBCO thin films was generated and the fault current was limited by the SFCL. In this paper, we investigated the fault current limiting characteristics according to fault current level in the flux-coupling type SFCL. The experiment results that the fault current limiting characteristics was improved according to increase of the fault current level.

  • PDF

초전도 변압기 권선의 전류분류 (Current Distribution in The Winding of a Superconducting Transformer)

  • 이동근;김우석;김성훈;최경달;주형길;홍계원;한진호;이희균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.851-853
    • /
    • 2004
  • This paper deals with current distribution analysis of the windings of a superconducting transformer with BSCCO-2223 High Tc Superconducting (HTS) tapes. Current distribution of HTS windings wound in parallel is analyzed by electromagnetic field analysis of finite element method and verified by experiments. For the sake of uniform current distribution, windings must be transposed so to make the impedances of each strands same. The parallel HTS tapes were transposed between the pancakes via non-superconducting joints because it is hard to make transpositions inside the pancake windings. In order to measure current distribution, test windings are fabricated and experimented for both transposed and non-transposed windings. We compared test results with calculated ones.

  • PDF

2차 권선을 직.병렬연결한 자속구속형 전류제한기의 퀜치특성 (Quench Characteristics of a Flux-lock type SFCL with Secondary Windings Connected in Serial and Parallel)

  • 박형민;조용선;최효상;오금곤;한태희;임성훈;황종선
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2006년도 춘계학술대회 논문집
    • /
    • pp.432-434
    • /
    • 2006
  • We investigated the quench characteristics of a flux-lock type superconducting fault current limiter (SFCL) according to the number of the superconducting elements at the subtractive polarity winding of a transformer. The flux-lock type SFCL consists of the transformer with a primary winding and two secondary windings connected in parallel, and the superconducting element was connected with secondary winding in series, respectively. The applied voltage at that tin was 200V. when two superconducting elements of the secondary winding was connected in parallel, the peak lie current increased up to 99A, while that flowing in a superconducting element in conventional flux-lock type SFCL showed 50A under the same conditions, the impedance of secondary winding under the same situation showed the opposite behavior. This enabled the parallel structure to be easy to increase the capacity of power system, in the meantime, The quench between two superconducting elements in the SFCL with two secondary windings connected in parallel was achieved simultaneously. While the quench-starting point was slightly different in the SFCL with two superconducting elements connected in series. We found that the parallel connection between the secondary windings increased the power capacity and let quench characteristics improve through their mutual linkage.

  • PDF