• Title/Summary/Keyword: superconducting quantum interference device

Search Result 88, Processing Time 0.018 seconds

Review of low-noise radio-frequency amplifiers based on superconducting quantum interference device

  • Lee, Y.H.;Chong, Y.;Semertzidis, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.1-6
    • /
    • 2014
  • Superconducting quantum interference device (SQUID) is a sensitive detector of magnetic flux signals. Up to now, the main application of SQUIDs has been measurements of magnetic flux signals in the frequency range from near DC to several MHz. Recently, cryogenic low-noise radio-frequency (RF) amplifiers based on DC SQUID are under development aiming to detect RF signals with sensitivity approaching quantum limit. In this paper, we review the recent progress of cryogenic low-noise RF amplifiers based on SQUID technology.

Correction of resonance frequency for RF amplifiers based on superconducting quantum interference device

  • Lee, Y.H.;Yu, K.K.;Kim, J.M.;Lee, S.K.;Chong, Y.;Oh, S.J.;Semertzidis, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.6-10
    • /
    • 2018
  • Low-noise amplifiers in the radio-frequency (RF) band based on the direct current (DC) superconducting quantum interference device (SQUID) can be used for quantum-limited measurements in precision physics experiments. For the prediction of peak-gain frequency of these amplifiers, we need a reliable design formula for the resonance frequency of the microstrip circuit. We improved the formula for the resonance frequency, determined by parameters of the DC SQUID and the input coil, and compared the design values with experimental values. The proposed formula showed much accurate results than the conventional formula. Minor deviation of the experimental results from the theory can be corrected by using the measured geometrical parameters of the input coil line.

Fabrication and statistical characterization of Nb SQUID sensors for multichannel SQUID system

  • Kim, B.K.;Yu, K.K.;Kim, J.M.;Kwon, H.;Lee, S.K.;Lee, Y.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.62-66
    • /
    • 2020
  • We fabricated superconducting quantum interference devices (SQUIDs) based on Nb Josephson junctions, and characterized the key parameters of the SQUIDs. The SQUIDs are double relaxation oscillation SQUIDs (DROSs) having larger flux-to-voltage transfer coefficient than the standard DC-SQUIDs. SQUID sensors were fabricated by using Nb junction technology consisted of a DC magnetron sputtering and a conventional photolithography process. In multichannel SQUID systems for whole-head magnetoencephalography measurement with a helmet-type SQUID array, we need about 336 SQUID sensors for each system. In this paper, we fabricated a few hundred SQUID sensors, measured the critical current, flux modulation voltage and decided if each tested SQUID can be used for the multichannel systems. As the criterion for the acceptance of the sensors, we chose the critical current and amplitude of the modulation voltage to be 8 ㎂ and 80 ㎶, respectively. The average critical current of the SQUIDs was 10.58 ㎂. The typical flux noise of the SQUIDs with input coil shorted was 2 μΦ0/√Hz at white region.

Fabrication of Nb SQUID on an Ultra-sensitive Cantilever (Nb SQUID가 탑재된 초고감도 캔티레버 제작)

  • Kim, Yun-Won;Lee, Soon-Gul;Choi, Jae-Hyuk
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • Superconducting quantum phenomena are getting attention from the field of metrology area. Following its first successful application of Josephson effect to voltage standard, piconewton force standard was suggested as a candidate for the next application of superconducting quantum effects in metrology. It is predicted that a micron-sized superconducting Nb ring in a strong magnetic field gradient generates a quantized force of the order of sub-piconewtons. In this work, we studied the design and fabrication of Nb superconducting quantum interference device (SQUID) on an ultra-thin silicon cantilever. The Nb SQUID and electrodes were structured on a silicon-on-insulator (SOI) wafer by dc magnetron sputtering and lift-off lithography. Using the resulting SOI wafer, we fabricated V-shaped and parallel-beam cantilevers, each with a $30-{\mu}m$-wide paddle; the length, width, and thickness of each cantilever arm were typically $440{\mu}m,\;4.5{\mu}m$, and $0.34{\mu}m$, respectively. However, the cantilevers underwent bending, a technical difficulty commonly encountered during the fabrication of electrical circuits on ultra-soft mechanical substrates. In order to circumvent this difficulty, we controlled the Ar pressure during Nb sputtering to minimize the intrinsic stress in the Nb film and studied the effect of residual stress on the resultant device.

  • PDF

Numerical study of topological SQUIDs

  • Soohong, Choi;Yeongmin, Jang;Sara, Arif;Yong-Joo, Doh
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.11-15
    • /
    • 2022
  • We conducted numerical calculations to obtain the critical current as a function of the magnetic flux through the topologically trivial and non-trivial superconducting quantum interference devices (SQUIDs), with varying the capacitive and inductive couplings of Josephson junctions (JJs). Our calculation results indicate that a nontrivial SQUID is almost indistinguishable from trivial SQUID, considering the effective capacitance coupling. When the SQUID contains 2π- and 4π-periodic supercurrents, the periodicity of the current-flux relation can be distinguished from the purely trivial or nontrivial SQUID cases, and its difference is sensitive to the relative ratio between the topologically trivial and nontrivial supercurrents. We believe that our calculation results would provide a practical guide to quantitatively measure the portion of the topologically nontrivial supercurrents in experiments.

A Single-Flux-Quantum Shift Register based on High-$T_c$ Superconducting Step-edge Josephson Junctions

  • Sung G.Y.;Choi, C.H.;Suh J.D.;Han, S. K.;Kang, K.Y.;Hwang, J.S.;Yoon, S.G.;Jung, K.R.;Lee, Y.H.;Kang, J.H.;Kim, Y.H.;Hahn, T.S.
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.31-35
    • /
    • 1999
  • We have fabricated and tested a simple circuit of the rapid single-flux-quantum(RSFQ) four-stage shift register using a single layer high-$T_c$ superconducting (HTS) $YBa_2Cu_3O_{7-x}$ (YBCO) thin film structure with 9 step-edge Josephson junctions. The circuit includes two read superconducting quantum interference devices(SQUID) and four stages. To establish a robust HTS RSFQ device fabrication process, we have focussed on the reproducible process of sharp and straight step-edge formation as well as the ratio of film thickness to step height, t/h. The spread of step-edge junction parameters was measured from each 13 junctions with t/h=1/3, 1/2, and 2/3 at various temperatures. We have demonstrated the simplified operation of the shift register at 65 K.

  • PDF

Magnetic Properties of Transition Metal-implanted ZnO Nanotips Grown on Sapphire and Quartz

  • Raley, Jeremy A.;Yeo, Yung-Kee;Hengehold, Robert L.;Ryu, Mee-Yi;Lu, Yicheng;Wu, Pan
    • Journal of Magnetics
    • /
    • v.13 no.1
    • /
    • pp.19-22
    • /
    • 2008
  • ZnO nanotips, grown on c-$Al_2O_3$ and quartz, were implanted variously with 200 keV Fe or Mn ions to a dose level of $5{\times}10^{16}cm^{-2}$. The magnetic properties of these samples were measured using a superconducting quantum interference device (SQUID) magnetometer. Fe-implanted ZnO nanotips grown on c-$Al_2O_3$ showed a coercive field width of 209 Oe and a remanent field of 12% of the saturation magnetization ($2.3{\times}10^{-5}emu$) at 300K for a sample annealed at $700^{\circ}C$ for 20 minutes. The field-cooled and the zero-field-cooled magnetization measurements also showed evidence of ferromagnetism in this sample with an estimated Curie temperature of around 350 K. The Mn-implanted ZnO nanotips grown on c-$Al_2O_3$ showed superparamagnetism resulting from the dominance of a spin-glass phase. The ZnO nanotips grown on quartz and implanted with Fe or Mn showed signs of ferromagnetism, but neither was consistent.

A Single-Flux-Quantum Shift Register based on High-T$_c$ Superconducting Step-edge Josephson Junctions

  • Sung, G.Y.;Choi, C.H.;Suh, J.D.;Han, S.K.;Kang, K.Y.;Hwang, J.S.;Yoon, S.G.;Jung, K.R.;Lee, Y.H.;Kang, J.H.;Kim, Y.H.;Hahn, T.S.
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.133-133
    • /
    • 1999
  • We have fabricated and tested a simple circuit of the rapid single-flux-quantum(RSFQ) four-stage shift register using a single layer high-T$_c$ superconducting (HTS) YBa$_2Cu_3O_{7-x}$ (YBCO) thin film structure with 9 step-edge Josephson junctions. The circuit includes two read superconducting quantum interference devices(SQUID) and four stages. To establish a robust HTS RSFQ device fabrication process, we have focussed the reproducible process of sharp and straight step-edge formation as well as the ratio of film thickness to step height t/h. The spread of step-edge junction parameters was measured from each13 junctions with t/h=l/3, l/2, and 2/3 at various temperatures. We have demonstrated the simplified operation of the shift register at 65 K..

  • PDF

Fabrication and characterization of PbIn-Au-PbIn superconducting junctions

  • Kim, Nam-Hee;Kim, Bum-Kyu;Kim, Hong-Seok;Doh, Yong-Joo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.5-8
    • /
    • 2016
  • We report on the fabrication and measurement results of the electrical transport properties of superconductor-normal metal-superconductor (SNS) weak links, made of PbIn superconductor and Au metal. The maximum supercurrent reaches up to ${\sim}6{\mu}A$ at T = 2.3 K and the supercurrent persists even at T = 4.7 K. Magnetic field dependence of the critical current is consistent with a theoretical fit using the narrow junction model. The superconducting quantum interference device (SQUID) was also fabricated using two PbIn-Au-PbIn junctions connected in parallel. Under perpendicular magnetic field, we clearly observed periodic oscillations of dV/dI with a period of magnetic flux quantum threading into the supercurrent loop of the SQUID. Our fabrication methods would provide an easy and simple way to explore the superconducting proximity effects without ultra-low-temperature cryostats.

Measurements of Auditory Evoked Neuromagnetic Fields using Superconducting Quantum Interference Devices (SQUID를 이용한 뇌 청각유발 자장의 측정)

  • 이용호;권혁찬;김진목;박용기
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.421-428
    • /
    • 1997
  • Magnetic field sensors made from superconducting quantum interference device (SQUID) are the most sensitive low-frequency sensors available, enabling measurements of extremely weak magnetic fields from the brain. Neuromagnetic measurements allow superior spatial resolution, compared with the present electric measurements, and superior temporal resolution, compared with the fMRl and PET, providing useful informations for the functional diagnoses of the brain. We developed a 4-channel SQUID system for neuromagnetic applications. The main features of the system are its simple readout electronics and compact pickup coil structure. A magnetically shielded room has been constructed for the reduction of environmental magnetic noises. The developed SQUID system has noise level lower than the magnetic noise from the brain. Magnetic field signals of the spontaneous r-rhythm activity and auditory evoked magnetic fields have been measured.

  • PDF