DOI QR코드

DOI QR Code

Magnetic Properties of Transition Metal-implanted ZnO Nanotips Grown on Sapphire and Quartz

  • Raley, Jeremy A. (Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson AFB) ;
  • Yeo, Yung-Kee (Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson AFB) ;
  • Hengehold, Robert L. (Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson AFB) ;
  • Ryu, Mee-Yi (Department of Physics, Kangwon National University) ;
  • Lu, Yicheng (Department of Electrical and Computer Engineering, Rutgers University) ;
  • Wu, Pan (Department of Electrical and Computer Engineering, Rutgers University)
  • Published : 2008.03.31

Abstract

ZnO nanotips, grown on c-$Al_2O_3$ and quartz, were implanted variously with 200 keV Fe or Mn ions to a dose level of $5{\times}10^{16}cm^{-2}$. The magnetic properties of these samples were measured using a superconducting quantum interference device (SQUID) magnetometer. Fe-implanted ZnO nanotips grown on c-$Al_2O_3$ showed a coercive field width of 209 Oe and a remanent field of 12% of the saturation magnetization ($2.3{\times}10^{-5}emu$) at 300K for a sample annealed at $700^{\circ}C$ for 20 minutes. The field-cooled and the zero-field-cooled magnetization measurements also showed evidence of ferromagnetism in this sample with an estimated Curie temperature of around 350 K. The Mn-implanted ZnO nanotips grown on c-$Al_2O_3$ showed superparamagnetism resulting from the dominance of a spin-glass phase. The ZnO nanotips grown on quartz and implanted with Fe or Mn showed signs of ferromagnetism, but neither was consistent.

Keywords

References

  1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000) https://doi.org/10.1126/science.287.5455.1019
  2. K. Ando, H. Saito, Z. Jin, T. Fukumura, M. Kawasaki, Y. Matsumoto, and H. Koinuma, J. Appl. Phys. 89, 7284 (2001) https://doi.org/10.1063/1.1356035
  3. I. Satoh and T. Kobayashi, Appl. Surf. Sci. 216, 603 (2003) https://doi.org/10.1016/S0169-4332(03)00461-6
  4. D. A. Schwartz, K. R. Kittilstved, and D. R. Gamelin, Appl. Phys. Lett. 85, 1395 (2004) https://doi.org/10.1063/1.1785872
  5. D. L. Hou, X. J. Ye, X. Y. Zhao, H. J. Meng, H. J. Zhou, X. L. Li, and C. M. Zhen, Appl. Phys. Lett. 102, 033905 (2007)
  6. P. Wu, G. Saraf, Y. Lu, D. H. Hill, R. Gateau, L. Wielunski, R. A. Bartynski, D. A. Arena, J. Dvorak, A. Moodenbaugh, T. Siegrist, J. A. Raley, and Y. K. Yeo, Appl. Phys. Lett. 89, 012508 (2006) https://doi.org/10.1063/1.2213519
  7. J. A. Raley, Y. K. Yeo, R. L. Hengehold, M.-Y. Ryu, and T. D. Steiner, J. Alloys. Compounds 423, 184 (2006) https://doi.org/10.1016/j.jallcom.2005.12.107
  8. J.-H. Lee, I.-H. Choi, S. Shin, S. Lee, J. Lee, C. Whang, S.-C. Lee, K.-R. Lee, J.-H. Baek, K. H. Chae, and J. Song, Appl. Phys. Lett. 90, 032504 (2007) https://doi.org/10.1063/1.2431765
  9. S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N. Emanetoglu, and Y. Lu, IEEE Trans. Nanotechnol. 2, 50 (2003) https://doi.org/10.1109/TNANO.2003.809120
  10. P. Wu, G. Saraf, Y. Lu, D. H. Hill, R. A. Bartynski, D. A. Arena, M.-Y. Ryu, J. A. Raley, and Y. K. Yeo, Appl. Phys. Lett. 85, 1247 (2004) https://doi.org/10.1063/1.1784043
  11. N. W. Ashcroft, N. D. Mermin, Solid State Physics, 1st ed., Saunders College, Philadelphia (1976)