• Title/Summary/Keyword: sun-synchronous orbit

Search Result 61, Processing Time 0.03 seconds

Qualification Test of ROCSAT -2 Image Processing System

  • Liu, Cynthia;Lin, Po-Ting;Chen, Hong-Yu;Lee, Yong-Yao;Kao, Ricky;Wu, An-Ming
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1197-1199
    • /
    • 2003
  • ROCSAT-2 mission is to daily image over Taiwan and the surrounding area for disaster monitoring, land use, and ocean surveillance during the 5-year mission lifetime. The satellite will be launched in December 2003 into its mission orbit, which is selected as a 14 rev/day repetitive Sun-synchronous orbit descending over (120 deg E, 24 deg N) and 9:45 a.m. over the equator with the minimum eccentricity. National Space Program Office (NSPO) is developing a ROCSAT-2 Image Processing System (IPS), which aims to provide real-time high quality image data for ROCSAT-2 mission. A simulated ROCSAT-2 image, based on Level 1B QuickBird Data, is generated for IPS verification. The test image is comprised of one panchromatic data and four multispectral data. The qualification process consists of four procedures: (a) QuickBird image processing, (b) generation of simulated ROCSAT-2 image in Generic Raw Level Data (GERALD) format, (c) ROCSAT-2 image processing, and (d) geometric error analysis. QuickBird standard photogrammetric parameters of a camera that models the imaging and optical system is used to calculate the latitude and longitude of each line and sample. The backward (inverse model) approach is applied to find the relationship between geodetic coordinate system (latitude, longitude) and image coordinate system (line, sample). The bilinear resampling method is used to generate the test image. Ground control points are used to evaluate the error for data processing. The data processing contains various coordinate system transformations using attitude quaternion and orbit elements. Through the qualification test process, it is verified that the IPS is capable of handling high-resolution image data with the accuracy of Level 2 processing within 500 m.

  • PDF

Design of Regional Coverage Low Earth Orbit (LEO) Constellation with Optimal Inclination

  • Shin, Jinyoung;Park, Sang-Young;Son, Jihae;Song, Sung-Chan
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.217-227
    • /
    • 2021
  • In this study, we describe an analytical process for designing a low Earth orbit constellation for discontinuous regional coverage, to be used for a surveillance and reconnaissance space mission. The objective of this study was to configure a satellite constellation that targeted multiple areas near the Korean Peninsula. The constellation design forms part of a discontinuous regional coverage problem with a minimum revisit time. We first introduced an optimal inclination search algorithm to calculate the orbital inclination that maximizes the geometrical coverage of single or multiple ground targets. The common ground track (CGT) constellation pattern with a repeating period of one nodal day was then used to construct the rest of the orbital elements of the constellation. Combining these results, we present an analytical design process that users can directly apply to their own situation. For Seoul, for example, 39.0° was determined as the optimal orbital inclination, and the maximum and average revisit times were 58.1 min and 27.9 min for a 20-satellite constellation, and 42.5 min and 19.7 min for a 30-satellite CGT constellation, respectively. This study also compares the revisit times of the proposed method with those of a traditional Walker-Delta constellation under three inclination conditions: optimal inclination, restricted inclination by launch trajectories from the Korean Peninsula, and inclination for the sun-synchronous orbit. A comparison showed that the CGT constellation had the shortest revisit times with a non-optimal inclination condition. The results of this analysis can serve as a reference for determining the appropriate constellation pattern for a given inclination condition.

Gyroless Yaw Angle Compassing of Earth-Pointing Spacecraft Using Magnetic Sensor

  • Lee, Seon-Ho;Ahn, Hyo-Sung;Rhee, Seung-Wu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2055-2058
    • /
    • 2004
  • This paper formulates a yaw angle determination algorithm for earth-point satellite. The algorithm based on vector observation, is implemented with the limited vector measurements. The proposed algorithm doesn't require gyro measurement data but magnetic sensor measurement data. In order to confirm the usefulness of the proposed method, we investigate the simulated telemetry data of the KOMPSAT-2, a satellite that is scheduled to be launched into a 685km altitude sun synchronous circular orbit in 2005.

  • PDF

Tolerance Analysis of Compact Imaging Spectrometer (COMIS) for a microsatellite STSAT3

  • Kim, Eun-Sil;Lee, Jun-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.27.2-27.2
    • /
    • 2008
  • The STSAT-3 satellite was initiated in October 2006 and will be launched into a lower sun-synchronous earth orbit (~700km) in 2010. COMIS takes hyperspectral images of 30m/60m ground sampling distance over a 30km swath width. The payload will be used for environmental monitoring, such as in-land water quality monitoring of Paldang Lake located next to Seoul, the capital of South Korea. An extensive sensitivity and error budget analysis of COMIS optical system have been performed. As way of estimating aggregate effects of all tolerances, a Monte Carlo simulation is used.

  • PDF

Comparison of the Monitored Forests Results from EO-1 Hyperion , ALI and Landsat 7 ETM+

  • Tan, Bingxiang;Li, Zengyuan
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1307-1309
    • /
    • 2003
  • The EO-1 spacecraft, launched November 21, 2000 into a sun synchronous orbit behind Landsat 7, hosts advanced technology demonstration instruments, whose capabilities are currently being assessed by the user community for future missions. A significant part of the EO-1 program is to perform data comparisons between Hyperion, ALI and Landsat 7 ETM+. In this paper, a comparison of forest classification results from Hyperion, ALI, and the ETM+ of Landsat-7 are provided for Wangqing Forest Bureau, Jilin Province, Northeast China. The data have been radiometrically corrected and geometrically resampled. Feature selection and statistical transforms are used to reduce the Hyperion feature space from 86 channels to 14 features. Classes chosen for discrimination included Larch, Spruce, Oak, Birch, Popular and Mixed forest and other landuses. Classification accuracies have been obtained for each sensor. Comparison of the classification results shows : Hyperion classification results were the best, ALI's were much better than ETM+.

  • PDF

Geostationary Satellite Launch Site and Orbit Injection (정지궤도위성 발사위치와 궤도투입에 관한 고찰)

  • DONG-SUN KIM
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.27-33
    • /
    • 2024
  • According to the success of the Nuri Space Launch Vehicle (KSLV-II) and the development goal of the next generation space launch vehicle (KSLV-III), it is expected that the domestic geostationary satellite capability will be increased from (1 to 3.7) ton. Also, it is predicted that substantial ability of about 1 ton can be provided for the space exploration of the Moon, Mars, asteroids, etc. The Goheung space launch site is optimized for sun-synchronous small satellites, and due to the essential precondition that the launch trajectory does not impinge another country's sovereign airspace, it is not satisfactory as a geostationary satellite launching site. Its latitude also requires more energy to shape the rotating orbital plane from the initial injection status. This results in a decreasing factor of economic feasibility, including the operating complexity. Therefore, in parallel with the development of a next generation space launch vehicle, the practical process for acquisition of oversea land or sea space launch site near the Earth's equator and research for the optimization of orbiting methods of geostationary satellite injection must be continued.

KOMPSAT Data Processing System: Preliminary Acceptance Test Results

  • Kim, Yong-Seung;Kim, Youn-Soo;Lim, Hyo-Suk;Lee, Dong-Han;Kang, Chi-Ho
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.331-336
    • /
    • 1999
  • The optical sensors of Electro-Optical Camera (EOC) and Ocean Scanning Multi-spectral Imager (OSMI) aboard the Korea Multi-Purpose SATellite (KOMPSAT) will be placed in a sun synchronous orbit in 1999. The EOC and OSMI sensors are expected to produce the land mapping imagery of Korean territory and the ocean color imagery of world oceans, respectively. Utilization of the EOC and OSMI data would encompass the various fields of science and technology such as land mapping, land use and development, flood monitoring, biological oceanography, fishery, and environmental monitoring. Readiness of data support for user community is thus essential to the success of the KOMPSAT program. As part of testing such readiness prior to the KOMPSAT launch, we have performed the preliminary acceptance test for the KOMPSAT data processing system using the simulated EOC and OSMI data sets. The purpose of this paper is to demonstrate the readiness of the KOMPSAT data processing system, and to help data users understand how the KOMPSAT EOC and OSMI data are processed and archived. Test results demonstrate that all requirements described in the data processing specification have been met, and that the image integrity is maintained for all products. It is however noted that since the product accuracy is limited by the simulated sensor data, any quantitative assessment of image products can not be made until actual KOMPSAT images will be acquired.

  • PDF

ATTITUDE CONTROL OF SMALL SCIENTIFIC SATELLITE USING GEOMAGNETISM (지구자기장을 이용한 소형과학위성의 자세조정)

  • 배성구;석재호;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.85-98
    • /
    • 1991
  • Geomagnetism was used to control the attitude of the small scientific satellite at low altitude in sun-synchronous orbit. First, we analyzed the telemetry data. The rotation state of the satellite, can be known from the magnitude and variations of the magnetic field which is measured from the 3 axis magnetometer. In axisymmetric case, it is possible to control the attitude of the satellite by changing the rotation velocity of each 3 axis. The algorithm and the program were developed to calculate the supply time of the current operating the magnetorquer. This attitude control can be applied when the satellite is in tumbling motion and after passive control is attained by the Gravity gradient boom.

  • PDF

HAUSAT-2 SPACE RADIATION ENVIRONMENT AND EFFECTS ANALYSIS (HAUSAT-2 우주방사능 환경과 영향 분석)

  • Jung Ji-wan;Chang Young-Keun
    • Bulletin of the Korean Space Science Society
    • /
    • 2005.04a
    • /
    • pp.143-147
    • /
    • 2005
  • This paper describes the analysis of radiation environment and effects. TID(Total ionizing Dose) and SEE(Single Event Effects) analysis are implemented. The HAUSAT-2 is a 25kg class nanosatellite which is operated at sun-synchronous orbit at an altitude 650km. Trapped proton and Electron, Solar Proton, Galactic Cosmic Ray models are considered to HAUSAT-2 radiation environment model. Total Dose-depth curve provides TID degree and components are verified by DMBP method and Sectoring analysis. SEE are analysed with Radiation Test Report. Existing Radiation Test Reports are use to SEE analysis of HAUSAT-2.

  • PDF

Product Assurance of KSLV-II Propulsion System (한국형발사체 추진기관개발에서의 제품보증활동)

  • Cho, Sang Yeon;Seol, Woo Seok;Ko, Jeonghwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.598-602
    • /
    • 2017
  • Korea Aerospace Research Institute has been developing 3-stage launcher KSLV-II, which can inject 1.5-ton satellite into sun synchronous orbit (SSO). For development process, Test Launch Vehicle(TLV) adopting the $2^{nd}$ and $3^{rd}$ stage of KSLV-II will be scheduled to launch in 2018. The propulsion system of TLV is composed of $2^{nd}$ stage engine system (ground type) and propellant supply system including LOX, Kerosene tanks. Until now, system integration of engineering model of TLV and delivery of qualification model have been done. In this paper, the product assurance activities for propulsion system KSLV-II will be illustrated.

  • PDF