• Title/Summary/Keyword: sums

Search Result 599, Processing Time 0.026 seconds

STRONG LAWS FOR WEIGHTED SUMS OF I.I.D. RANDOM VARIABLES

  • Cai, Guang-Hui
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.771-778
    • /
    • 2006
  • Strong laws are established for linear statistics that are weighted sums of a random sample. We show extensions of the Marcinkiewicz-Zygmund strong laws under certain moment conditions on both the weights and the distribution. The result obtained extends and sharpens the result of Sung ([12]).

COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF RANDOM ELEMENTS

  • Sung, Soo-Hak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.369-383
    • /
    • 2010
  • We obtain a result on complete convergence of weighted sums for arrays of rowwise independent Banach space valued random elements. No assumptions are given on the geometry of the underlying Banach space. The result generalizes the main results of Ahmed et al. [1], Chen et al. [2], and Volodin et al. [14].

Weak convergence for weighted sums of level-continuous fuzzy random variables (수준 연속인 퍼지 랜덤 변수의 가중 합에 대한 약 수렴성)

  • Kim, Yun-Kyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.852-856
    • /
    • 2004
  • The present paper establishes a necessary and sufficient condition for weak convergence for weighted sums of compactly uniformly integrable level-continuous fuzzy random variables as a generalization of weak laws of large numbers for sums of fuzzy random variables.

On Convergence of Weighted Sums of LNQD Random

  • Kim, So-Youn;Baek, Jong-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.5
    • /
    • pp.647-654
    • /
    • 2012
  • We discuss the strong convergence for weighted sums of linearly negative quadrant dependent(LNQD) random variables under suitable conditions and the central limit theorem for weighted sums of an LNQD case is also considered. In addition, we derive some corollaries in LNQD setting.