References
- Ahmed, S. E., Antonini, R. G. and Volodin, A. (2002). On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements with application to moving average processes, Statistics & Probability Letters, 58, 185C194. https://doi.org/10.1016/S0167-7152(02)00126-8
- Antonini, R. G., Kwon, J. S., Sung, S. H. and Volodin, A. I. (2001). On the strong convergence of weighted sums, Stochastic Analysis and Applications, 19, 903-909. https://doi.org/10.1081/SAP-120000752
- Baek, J. I., Park, S. T., Chung, S. M., Liang, H. Y. and Lee, C. Y. (2005). On the complete convergence of weighted sums for dependent random variables, Journal of the Korean Statistical Society, 34, 21-33.
- Billingsley, P. (1968). Convergence of Probability Measures, John Wiley & Sons, New York.
- Cai, Z. and Roussas, G. G. (1997). Smooth estimate of quantiles under association, Statistics & Probability Letters, 36, 275-287. https://doi.org/10.1016/S0167-7152(97)00074-6
- Ghosal, S. and Chandra, T. K. (1998). Complete convergence of martingale arrays, Journal of Theoretical Probability, 11, 621-631. https://doi.org/10.1023/A:1022646429754
- Gut, A. (1992). Complete convergence for arrays, Periodica Mathematica Hungarica, 25, 51-75. https://doi.org/10.1007/BF02454383
- Hsu, P. L. and Robbins, H. (1947). Complete convergence and the law of large numbers, In Proceedings of the National Academy of Sciences of the United States of America, 33, 25-31. https://doi.org/10.1073/pnas.33.2.25
- Hu, T. C., Li, D., Rosalsky, A. and Volodin, A. (2001). On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements, Theory of Probability and Its Applications, 47, 455-468.
- Hu, T. C., Rosalsky, A., Szynal, D. aud Volodin, A. (1999). On complete convergence for arrays of rowwise independent random elements in Banach spaces, Stochastic Analysis and Applications, 17, 963-992. https://doi.org/10.1080/07362999908809645
- Joag Dev, K. and Proschau, F. (1983). Negative association of random variables with applications, The Annals of Statistics, 11, 286-295. https://doi.org/10.1214/aos/1176346079
- Ko, M. H., Ryu, D.-H. and Kim, T.-S. (2007). Limiting behaviors of weighted sums for linearly negative quadrant dependent dependent random variables, Taiwanese Journal of Mathematics, 11, 511-522.
- Kuczmaszewska, A. and Szynal, D. (1994). On complete convergence in a Banach space, International Journal of Mathematics and Mathematical Sciences, 17, 1-14. https://doi.org/10.1155/S0161171294000013
- Lehmann, E. L. (1966). Some concepts of dependence, The Annals of Mathematical Statistics, 37, 1137-1153. https://doi.org/10.1214/aoms/1177699260
- Liaug, H. Y, Zhang, D. X. and Baek, J. I. (2004). Convergence of weighted sums for dependent random variables, Journal of the Korean Mathematical Society, 41,883-894. https://doi.org/10.4134/JKMS.2004.41.5.883
- Magda, P. and Sergey, U. (1997). Central limit theorem for linear processes, The Annals of Probability, 25, 443-456. https://doi.org/10.1214/aop/1024404295
- Newman, C. M. (1984). Asymptotic independence and limit theorems for positively and negatively dependent random variables. In Y L. Tong(Ed.)., Statistics and Probability, 5 127-140.
- Pruitt, W. E. (1966). Summability of independence of random variables, Journal of Mathematics and Mechanics, 15, 769-776.
- Rohatgi, V. K. (1971). Convergence of weighted sums of independent random variables, Mathematical Proceedings of the Cambridge Philosophical Society, 69, 305-307. https://doi.org/10.1017/S0305004100046685
- Waug, J. and Zhaug, L. (2006). A Berry-Esseen theorem for weakly negatively dependent random variables and its applications, Acta Mathematica Hungarica, 110, 293-308. https://doi.org/10.1007/s10474-006-0024-x
- Waug, X., Rao, M. B. and Yang, X. (1993). Convergence rates on strong laws of large numbers for arrays of rowwise independent elements, Stochastic Analysis and Applications, 11, 115-132. https://doi.org/10.1080/07362999308809305