• Title/Summary/Keyword: sulfur compounds

Search Result 561, Processing Time 0.027 seconds

Characteristics of Pyrolysis Oils from Saccharina japonica in an Auger Reactor (Auger 반응기에서 제조한 다시마 유래 열분해오일의 특성)

  • Choi, Jae-Wook;Son, Deokwon;Suh, Dong Jin;Kim, Hwayong;Lee, Youn-Woo
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.70-76
    • /
    • 2018
  • Pyrolysis of Saccharina japonica in an Auger reactor was conducted by varying the temperature and the auger speed and then physicochemical properties of the S. japonica-derived pyrolysis oil were analyzed. The maximum yield of S. japonica-derived pyrolysis oil (32 wt%) was obtained at a pyrolysis temperature of $412^{\circ}C$ and an auger speed of 20 rpm. Due to low carbon content and high oxygen content in the pyrolysis oil, the higher heating value of S. japonica-derived pyrolysis oil was $23.6MJ\;kg^{-1}$, which was about 60% that of conventional hydrocarbon fuels. By GC/MS analysis, 1,4-Anhydro-d-galactitol, dianhydromannitol, 1-hydroxy 2-propanone and isosorbide were identified as the main chemical compounds of S. japonica-derived pyrolysis oil. The bio-char has low higher heating value ($13.0MJ\;kg^{-1}$) due to low carbon content and high oxygen content and contains a large amount of inorganic components and sulfur.

Synthesized Oil Manufacturing Technology from Natural Gas, GTL (천연가스로부터 합성유 제조 기술, GTL(Gas To Liquids))

  • Bae, Ji-Han;Lee, Won-Su;Lee, Heoung-Yeoun;Kim, Yong-Heon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.45-52
    • /
    • 2008
  • The GTL(Gas to Liquids) technology, manufacturing synthesized oil from natural gas, had been developed about 1920 for the military purpose by Fischer and Tropsch, German scientists. And 1960, Sasol company had started commercializing the FT(Fischer-Tropsch) synthesis technology, for the transport fuel in South Africa. Until a recent date, the commercialization of GTL technology had been delayed by low oil price. But concern about depletion of petroleum resources, and development in synthesizing technology lead to spotlight on the GTL businesses. Especially, Qatar, which has rich natural gas fields, aims at utilizing natural gas like conventional oil resources. Therefore, around this nation, GTL plants construction has been promoted. There are mainly 3 processes to make GTL products(Diesel, Naphtha, lube oil, etc) from natural gas. The first is synthesis gas generation unit reforming hydrogen and carbomonoxide from natural gas. The second is FT synthesis unit converting synthesized gas to polymeric chain-hydrocarbon. The third is product upgrading unit making oil products from the FT synthesized oil. There are quite a little sulfur, nitrogen, and aromatic compounds in GTL products. GTL product has environmental premium in discharging less harmful particles than refinery oil products from crude to the human body. In short, the GTL is a clean technology, easier transportation mean, and has higher stability comparing to LNG works.

  • PDF

A study on the Investigation and Removal the Cause of Blacken Effect of Waterlogged archaeological woods (수침고목재의 흑화 원인과 제거방법에 관하여)

  • Yang, Seok-jin
    • Korean Journal of Heritage: History & Science
    • /
    • v.40
    • /
    • pp.413-430
    • /
    • 2007
  • This study analyzed the foreign substances in waterlogged archaeological woods and compounds in soil where waterlogged archaeological wood was buried, in order to examine the relationship between burial environment and foreign substances in waterlogged archaeological wood. The XRF(X-ray Fluorescence Spectroscopy) and EDX(Energy Dispersive X-ray) analysis were conducted to examine the effect of iron(Fe) to blacken the waterlogged wood. The XRF results showed that investigated soil contained Si, Al, and Fe. Wood ash contained more sulfur and Fe than any other elements in the EDX analysis. Cellulose and hemicellulose were significantly reduced at the surface of wood, which is the blackened part of waterlogged wood. Foreign substances changed the surface color. These problems could be solved by removal of foreign substances in waterlogged archaeological wood using EDTA(Ethylene Diamine Tetra Acetic acid). The optimum condition to remove Fe from waterlogged wood by EDTA was investigated. To do this, the concentration of Fe removed was measured with various concentration of EDTA-2Na. The optimum pH of EDTA-2Na was figured to be 4.1 to 4.3. As the concentration of EDTA increased, the extracted concentration of Fe also increased. In the case of 0.4 wt% of EDTA-2Na, about 60ppm of Fe was eliminated and was stabilized after 48 hours. In the case of EDTA-3Na, the optimum pH was 7 to 8, and about 10 ppm of Fe was eliminated at 0.4 wt% of EDTA-3Na. In the case of EDTA-4Na, the optimum pH was 10 to 11, and about 20 ppm of Fe was eliminated at 0.4 wt% of EDTA-4Na. In conclusion, the iron(Fe) in waterlogged archaeological wood was removed by EDTA treatment and it increased the whiteness of the surface.

Suggestion of Physicochemical Characteristics and Safety Management in the Waste Containing Nanomaterials from Engineered Nano-materials Manufacturing Plants and Waste Treatment Facilities (산업용제조시설과 폐기물처리시설에서 발생된 나노폐기물의 물리화학적 특성 및 안전관리방안 제시)

  • Kim, Woo-Il;Yeon, Jin-Mo;Cho, Na-Hyeon;Kim, Yong-Jun;Um, Nam-Il;Kim, Ki-Heon;Lee, Young-Kee
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.670-682
    • /
    • 2018
  • Engineered nanomaterials (ENMs) can be released to humans and the environment through the generation of waste containing engineered nanomaterials (WCNMs) and the use and disposal of nano-products. Nanoparticles can also be introduced intentionally or unintentionally into waste streams. This study examined WCNMs in domestic industries, and target nanomaterials, such as silicon dioxide, titanium oxide, zinc oxide, nano silver, and carbon nanotubes (CNTs), were selected. We tested 48 samples, such as dust, sludge, ash, and by-products from manufacturing facilities and waste treatment facilities. We analyzed leaching and content concentrations for heavy metals and hazardous constituents of the waste. Chemical compositions were also measured by XRD and XRF, and the unique properties of nano-waste were identified by using a particle size distribution analyzer and TEM. The dust and sludge generated from manufacturing facilities and the use of nanomaterials showed higher concentrations of metals such as lead, arsenic, chromium, barium, and zinc. Oiled cloths from facilities using nano silver revealed high concentrations of copper, and the leaching concentrations of copper and lead in fly ash were higher than those in bottom ash. In XRF measurements at the facilities, we detected compounds such as silicon dioxide, sulfur trioxide, calcium oxide, titanium dioxide, and zinc oxide. We found several chemicals such as calcium oxide and silicon dioxide in the bottom ash of waste incinerators.

Catalytic Decomposition of $SF_6$ by Hydrolysis and Oxidation over ${\gamma}-Al_2O_3$ (${\gamma}-Al_2O_3$ 촉매상에서 가수분해와 산화반응에 의한 $SF_6$ 촉매분해 특성)

  • Lee, Sun-Hwa;Park, No-Kuk;Yoon, Suk-Hoon;Chang, Won-Chul;Lee, Tae-Jin
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.273-279
    • /
    • 2009
  • $SF_6$, which has a high global warming potential, can be decomposed to sulfur and fluorine compounds through hydrolysis by $H_2O$ or oxidation by $O_2$ over solid acid catalysts. In this study ${\gamma}-Al_2O_3$ was employed as the solid acid catalyst for the abatement of $SF_6$ and its catalytic activity was investigated with respect to the reaction temperature and the space velocity. The catalytic activity for $SF_6$ decomposition by the hydrolysis reached the maximum at and above 973 K with the space velocity of $20,000\;ml/g_{-cat}{\cdot}h$, exhibiting a conversion very close to 100%. When the space velocity was lower than $45,000\;ml/g_{-cat}{\cdot}h$, the conversion was maintained at the maximum value. On the other hand, the conversion of $SF_6$ by the oxidation was about 20% under the same conditions. The SEM and XRD analyses revealed that the ${\gamma}-Al_2O_3$ was transformed to ${\alpha}-Al_2O_3$ during the hydrolysis and to $AlF_3$ during the oxidation, respectively. The size of $AlF_3$ after the oxidation was over $20\;{\mu}m$, and its catalytic activity was low due to the low surface area. Therefore, it was concluded that the hydrolysis over ${\gamma}-Al_2O_3$ was much more favorable than the oxidation for the catalytic decomposition of $SF_6$.

Study of Hydrotreating and Hydrocracking Catalysts for Conversion of Waste Plastic Pyrolysis Oil to Naphtha (폐플라스틱 열분해유의 납사 전환을 위한 수첨처리 및 수첨분해 촉매연구)

  • Ki-Duk Kim;Eun Hee Kwon;Kwang Ho Kim;Suk Hyun Lim;Hai Hung Pham;Kang Seok Go;Sang Goo Jeon;Nam Sun Nho
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.126-130
    • /
    • 2023
  • In response to environmental demands, pyrolysis is one of the practical methods for obtaining reusable oils from waste plastics. However, the waste plastic pyrolysis oils (WPPO) are consumed as low-grade fuel oil due to their impurities. Thus, this study focused on the upgrading method to obtain naphtha catalytic cracking feedstocks from WPPO by the hydroprocessing, including hydrotreating and hydrocracking reaction. Especially, various transition metal sulfides supported catalysts were investigated as hydrotreating and hydrocracking catalysts. The catalytic performance was evaluated with a 250 ml-batch reactor at 370~400 ℃ and 6.0 MPa H2. Sulfur-, nitrogen-, and chlorine-compounds in WPPO were well eliminated with nickel-molybdenum/alumina catalysts. The NiMo/ZSM-5 catalyst has the highest naphtha yield.

Changes in concentration of VSCs after home oral care interventions based on community care in older adults (커뮤니티케어 기반 방문구강관리 중재에 의한 노인의 구취 농도 변화)

  • Myeong-Hwa Park;Min-Sook Jeong;Jong-Hwa Jang
    • Journal of Korean society of Dental Hygiene
    • /
    • v.23 no.2
    • /
    • pp.91-103
    • /
    • 2023
  • Objectives: This case study was conducted to assess changes in the concentration of volatile sulfur compounds (VSCs) of older adults following home oral health care interventions based on community care. Methods: The participants were three elderly people with the halitosis. An oral health intervention programs including oral massage, oral hygiene care, and oral muscle training strenghtening were conducted for 12 weeks. Halitosis was measured using an oral malodor-checking device. Results: The program showed positive effects on changes in halitosis. The concentration of VSCs of the first case decreased rapidly from 44.5 Refres Oral Volume (ROV) on pre-test to 15.5 ROV on the first post-test. In the second case, the score decreased from 14.5 ROV on pre-test to 12 ROV on 2nd post-test. In the third case, the score decreased slightly from 6.5 ROV on pre-test to 6 ROV on the first post-test. Conclusions: Oral health care interventions contributed to decreasing the concentration of VSCs and improving the quality of life of older adults. The active promotion and customization of these programs are required.

Air Pollution and Its Effects on E.N.T. Field (대기오염과 이비인후과)

  • 박인용
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1972.03a
    • /
    • pp.6-7
    • /
    • 1972
  • The air pollutants can be classified into the irritant gas and the asphixation gas, and the irritant gas is closely related to the otorhinolaryngological diseases. The common irritant gases are nitrogen oxides, sulfur oxides, hydrogen carbon compounds, and the potent and irritating PAN (peroxy acyl nitrate) which is secondarily liberated from photosynthesis. Those gases adhers to the mucous membrane to result in ulceration and secondary infection due to their potent oxidizing power. 1. Sulfur dioxide gas Sulfur dioxide gas has the typical characteristics of the air pollutants. Because of its high solubility it gets easily absorbed in the respiratory tract, when the symptoms and signs by irritation become manifested initially and later the resistance in the respiratory tract brings central about pulmonary edema and respiratory paralysis of origin. Chronic exposure to the gas leads to rhinitis, pharyngitis, laryngitis, and olfactory or gustatory disturbances. 2. Carbon monoxide Toxicity of carbon monoxide is due to its deprivation of the oxygen carrying capacity of the hemoglobin. The degree of the carbon monoxide intoxication varies according to its concentration and the duration of inhalation. It starts with headache, vertigo, nausea, vomiting and tinnitus, which can progress to respiratory difficulty, muscular laxity, syncope, and coma leading to death. 3. Nitrogen dioxide Nitrogen dioxide causes respiratory disturbances by formation of methemoglobin. In acute poisoning, it can cause pulmonary congestion, pulmonary edema, bronchitis, and pneumonia due to its strong irritation on the eyes and the nose. In chronic poisoning, it causes chronic pulmonary fibrosis and pulmonary edema. 4. Ozone It has offending irritating odor, and causes dryness of na sopharyngolaryngeal mucosa, headache and depressed pulmonary function which may eventually lead to pulmonary congestion or edema. 5. Smog The most outstanding incident of the smog occurred in London from December 5 through 8, 1952, because of which the mortality of the respiratory diseases increased fourfold. The smog was thought to be due to the smoke produced by incomplete combustion and its byproduct the sulfur oxides, and the dust was thought to play the secondary role. In new sense, hazardous is the photochemical smog which is produced by combination of light energy and the hydrocarbons and oxidant in the air. The Yonsei University Institute for Environmental :pollution Research launched a project to determine the relationship between the pollution and the medical, ophthalmological and rhinopharyngological disorders. The students (469) of the "S" Technical School in the most heavily polluted area in Pusan (Uham Dong district) were compared with those (345) of "K" High School in the less polluted area. The investigated group had those with subjective symptoms twice as much as the control group, 22.6% (106) in investigated group and 11.3% (39) in the control group. Among those symptomatic students of the investigated group. There were 29 with respiratory symptoms (29%), 22 with eye symptoms (21%), 50 with stuffy nose and rhinorrhea (47%), and 5 with sore thorat (5%), which revealed that more than half the students (52%) had subjective symptoms of the rhinopharyngological aspects. Physical examination revealed that the investigated group had more number of students with signs than those of the control group by 10%, 180 (38.4%) versus 99 (28.8%). Among the preceding 180 students of the investigated group, there were 8 with eye diseases (44%), 1 with respiratory disease (0.6%), 97 with rhinitis (54%), and 74 with pharyngotonsillitis (41%) which means that 95% of them had rharygoical diseases. The preceding data revealed that the otolaryngological diseases are conspicuously outnumbered in the heavily polluted area, and that there must be very close relationship between the air pollution and the otolaryngological diseases, and the anti-pollution measure is urgently needed.

  • PDF

Physicochemical and Microbial Quality Characteristics of Garlic (Allium sativum L.) by Superheated Steam Treatment (과열증기 처리에 따른 마늘의 이화학적 및 미생물학적 품질 특성)

  • Park, Chan-Yang;Lee, Kyoyeon;Kim, Ahna;So, Seulah;Rahman, M. Shafiur;Choi, Sung-Gil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.10
    • /
    • pp.1438-1446
    • /
    • 2016
  • The objectives of this study were to investigate the effects of superheated steam (SHS) treatment on the physicochemical and microbial properties of garlic. The garlic was treated by SHS at temperatures of 100, 150, 200, 250, 300, and $350^{\circ}C$ for 60 s. The moisture content of raw garlic was lower than that of SHS-treated garlic. The total thiosulfinate and pyruvate contents were dramatically reduced by SHS treatments. The antioxidant activities of garlic measured by ferric reducing/antioxidant power, 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical scavenging assay, and total phenolics content decreased by SHS. The major volatile sulfur compounds of garlic such as diallyl disulfide, allicin, allyl sulfide, diallyl sulfide, and diallyl trisulfide were significantly reduced by SHS. The antimicrobial effects of raw garlic were stronger than those of SHS-treated garlic against three strains of bacteria, including Staphylococcus aureus, Escherichia coli, and Bacillus cereus. However, total aerobic bacteria in garlic were dramatically reduced by SHS from 8.6 to 2.9 log CFU/g. The results from the sensory evaluation show that SHS treatment of garlic above $200^{\circ}C$ provides better acceptably due to reduction of off-flavor and pungency of garlic. These results suggest that superheated steam treatment can used as an efficient process for reducing garlic off-flavor and pungency.

A Study on the Identification of Animal Hair in Food (식품 중 동물 털 이물의 판별법 연구)

  • Lee, Jae-Hwang;Park, Young-Eun;Lim, Byung-Chul;Kim, Ju-Shin;Choi, Jong-Hyun;Kang, Tae Sun;Lee, Jin-Ha;Kwon, Kisung
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.1
    • /
    • pp.57-63
    • /
    • 2017
  • Foreign materials with a variety of types and sizes are found in food; thus, extraordinary efforts and various analytical methods are required to identify the types of foreign materials and to find out accurate causes of how they unintentionally enter food. In this study, human, cow, pig, mouse, duck, goose, dog, and cat were chosen as various types of animal hairs because they can be frequently incorporated into food during its production or consumption step. We morphologically analyzed them using stereoscopic, optical, SUMP method, and scanning electron microscopes, showing differences in each type. In addition, X-ray fluorescence spectrometer (XRF) was used to analysis chemical compositions ($^{11}Na{\sim}^{92}U$, Mass%) of samples. As a result, we observed that mammalian hairs were mainly composed of sulfur. Organic compounds of samples were further analyzed by fourier transform infrared spectroscopy (FT-IR) that can compare spectra of given materials; however, this method did not show significant differences in each sample. In this study, we suggest a rapid method for the identification of the causes and types of foreign materials in food.