• 제목/요약/키워드: suitable code

검색결과 488건 처리시간 0.024초

ANALYSIS OF THE NODALISATION INFLUENCE ON SIMULATING ATMOSPHERIC STRATIFICATIONS IN THE EXPERIMENT THAI TH13 WITH THE CONTAINMENT CODE SYSTEM COCOSYS

  • Burkhardt, Joerg;Schwarz, Siegfried;Koch, Marco K.
    • Nuclear Engineering and Technology
    • /
    • 제41권9호
    • /
    • pp.1135-1142
    • /
    • 2009
  • The activities related to this paper are to investigate the influence of nodalisation on simulating atmospheric stratification in the THAI experiment TH13 (ISP-47) with the German containment code COCOSYS. This article focuses on different nodalisations of the vessel dome, where an atmospheric stratification occurred due to a high helium content. The volume of the dome was divided into several levels that were varied horizontally into different geometries. These geometries differ in the number of zones as well as in the existence of zones that enable the direct rise of an ascending steam plume into the vessel dome. Additionally, the vertical subdivision of the vessel dome was increased to simulate density gradients in a more detailed way. It was pointed out that the proper simulation of atmospheric stratifications and their dissolution depends on both a suitable horizontal as well as vertical nodalisation scheme. Besides, the treatment of fog droplets has an influence if their settlement is not simulated correctly. This report gives an overview of the gained experience and provides nodalisation requirements to simulate atmospheric stratifications and their proper dissolution.

Development of Stable Walking Robot for Accident Condition Monitoring on Uneven Floors in a Nuclear Power Plant

  • Kim, Jong Seog;Jang, You Hyun
    • Nuclear Engineering and Technology
    • /
    • 제49권3호
    • /
    • pp.632-637
    • /
    • 2017
  • Even though the potential for an accident in nuclear power plants is very low, multiple emergency plans are necessary because the impact of such an accident to the public is enormous. One of these emergency plans involves a robotic system for investigating accidents under conditions of high radiation and contaminated air. To develop a robot suitable for operation in a nuclear power plant, we focused on eliminating the three major obstacles that challenge robots in such conditions: the disconnection of radio communication, falling on uneven floors, and loss of localization. To solve the radio problem, a Wi-Fi extender was used in radio shadow areas. To reinforce the walking, we developed two- and four-leg convertible walking, a floor adaptive foot, a roly-poly defensive falling design, and automatic standing recovery after falling methods were developed. To allow the robot to determine its location in the containment building, a bar code landmark reading method was chosen. When a severe accident occurs, this robot will be useful for accident condition monitoring. We also anticipate the robot can serve as a workman aid in a high radiation area during normal operations.

Evaluation of thermal-hydraulic performance and economics of Printed Circuit Heat Exchanger (PCHE) for recuperators of Sodium-cooled Fast Reactors (SFRs) using CO2 and N2 as working fluids

  • Lee, Su Won;Shin, Seong Min;Chung, SungKun;Jo, HangJin
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1874-1889
    • /
    • 2022
  • In this study, we evaluate the thermal-hydraulic performance and economics of Printed Circuit Heat Exchanger (PCHE) according to the channel types and associated shape variables for the design of recuperators with Sodium-cooled Fast Reactors (SFRs). To perform the evaluations with variables such as the Reynolds number, channel types, tube diameter, and shape variables, a code for the heat exchanger is developed and verified through a comparison with experimental results. Based on the code, the volume and pressure drop are calculated, and an economic assessment is conducted. The zigzag type, which has bending angle of 80° and a tube diameter of 1.9 mm, is the most economical channel type in a SFR using CO2 as the working fluid. For a SFR using N2, we recommend the airfoil type with vertical and horizontal numbers of 1.6 and 1.1, respectively. The airfoil type is superior when the mass flow rate is large because the operating cost changes significantly. When the mass flow rate is small, volume is a more important design parameter, therefore, the zigzag type is suitable. In addition, we conduct a sensitivity analysis based on the production cost of the PCHE to identify changes in optimal channel types.

오픈소스 Blockly를 이용한 모바일용 피지컬 컴퓨팅 개발환경 구축 (Development Environment Construction of Physical Computing for Mobile Using Open Source Blockly)

  • 조은주;문미경
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제13권6호
    • /
    • pp.21-30
    • /
    • 2017
  • 피지컬 컴퓨팅은 단순 컴퓨터 입출력이 아닌 현실세계와 상호작용을 통해 이루어지므로 학생들의 컴퓨팅적 사고와 소양을 기르는데 적합하다. 또한 이를 블록형 코딩 개발환경에서 개발한다면 사용자는 훨씬 더 직관적이고 쉽게 개발을 할 수 있을 것이다. 그러나 기존 블록형 코딩 개발환경은 물리기기가 컴퓨터에 지속적으로 연결되어 있어야 한다는 번거로움이 있다. Blockly는 코드 개념을 나타내는 그래픽 블록이 연동되어 웹과 안드로이드 애플리케이션에 시각적 코드 에디터를 추가하는 오픈소스 라이브러리이다. 본 논문에서는 오픈소스 Blockly 기반으로 기존의 블록형 개발환경에 피지컬 컴퓨팅 기능을 추가하고 이를 무선통신으로 동작시킬 수 있는 모바일용 피지컬 컴퓨팅 개발환경의 구축 내용에 대해 기술한다.

무선 센서 네트워크에서의 효율적 Broadcast Authentication 방안 (An efficient Broadcast Authentication Scheme for Wireless Sensor Networks)

  • 문형석;이성창
    • 대한전자공학회논문지TC
    • /
    • 제43권6호
    • /
    • pp.23-29
    • /
    • 2006
  • 자원 제한적인 노드들로 구성되는 무선 센서 네트워크의 보안 알고리즘은 짧은 패킷 길이와 메모리, 컴퓨팅 능력, 전력 등의 자원 문제 때문에 기존의 보안 알고리즘을 적용하기가 힘들다. 주로 센서의 자원 사용이 상대적으로 덜하고, 키 길이가 짧은 공유키 기반의 알고리즘이 많이 사용되고 있지만 베이스스테이션의 브로드캐스트 패킷에 대한 인증을 위해서 단순히 전체 노드가 동일한 공유키를 가지는 방식은 적합하지 못하다. 최근 센서 네트워크에 적합한 형태의 브로드캐스트 인증 알고리즘으로, one-way 해쉬 함수를 이용한 키 체인생성과 키 체인의 각 키를 이용한 Message Authentication Code 생성, 지연된 키 공개를 이용한 알고리즘이 제안 되었다. 이러한 방식은 무선 센서 네트워크 환경에 적합한 인증 방식을 제공하지만 브로드캐스트 율, 키 체인 레벨 등, 네트워크의 각 조건에 따라 비효율적인 결과를 초래하기도 한다. 본 논문에서는 키 체인 링크 및 주기적 키 공개 방식을 이용하여 낮은 인증 딜레이를 보장하며, 패킷 송수신량과 수신 노드의 메모리 및 컴퓨팅 리소스를 효율적으로 사용할 수 있도록 개선된 브로드캐스트 인증 알고리즘을 제안하고, TinyOS의 TOSSIM으로 그 성능을 검증한다.

CH4비예혼합화염의 수치계산에 적용하기 위한 확장된 축소반응기구의 비정상 응답특성 검토 (An Investigation of Unsteady Response of Augmented Reduced Mechanism for Numerical Simulation of CH4 Nonpremixed Flames)

  • 오창보;박정;이창언
    • 대한기계학회논문집B
    • /
    • 제27권2호
    • /
    • pp.243-250
    • /
    • 2003
  • The extinction behavior and the unsteady response of augmented reduced mechanism(ARM) have been investigated by adopting an OPPDIF code and a numerical solver for the flamelet equations. By comparing the performance of the ARM based on Miller and Bowman's mechanism(MB-ARM) with that of the ARM based on GRI-Mech 3.0(GRI-3.0-ARM), it is identified that the MB-ARM is more suitable for the unsteady calculation because it is relatively less stiff than GRI-3.0-ARM during an ignition process. The steady results using the MB-ARM, which is modified to predict reasonably the extinction point of experiment, are in excellent agreement with those from full mechanism. Under the sinusoidal transient disturbances of scalar dissipation rate, the unsteady responses of the flame temperature and species concentrations using a modified MB-ARM show in very close agreement with those from full mechanism. It is presumed that above modified MB-ARM is very suitable for the unsteady simulation of turbulent flames because it gives not only a low computational cost but also a good prediction performance for flame structure, extinction point and unsteady response.

Benchmarking of BioPerl, Perl, BioJava, Java, BioPython, and Python for Primitive Bioinformatics Tasks and Choosing a Suitable Language

  • Ryu, Tae-Wan
    • International Journal of Contents
    • /
    • 제5권2호
    • /
    • pp.6-15
    • /
    • 2009
  • Recently many different programming languages have emerged for the development of bioinformatics applications. In addition to the traditional languages, languages from open source projects such as BioPerl, BioPython, and BioJava have become popular because they provide special tools for biological data processing and are easy to use. However, it is not well-studied which of these programming languages will be most suitable for a given bioinformatics task and which factors should be considered in choosing a language for a project. Like many other application projects, bioinformatics projects also require various types of tasks. Accordingly, it will be a challenge to characterize all the aspects of a project in order to choose a language. However, most projects require some common and primitive tasks such as file I/O, text processing, and basic computation for counting, translation, statistics, etc. This paper presents the benchmarking results of six popular languages, Perl, BioPerl, Python, BioPython, Java, and BioJava, for several common and simple bioinformatics tasks. The experimental results of each language are compared through quantitative evaluation metrics such as execution time, memory usage, and size of the source code. Other qualitative factors, including writeability, readability, portability, scalability, and maintainability, that affect the success of a project are also discussed. The results of this research can be useful for developers in choosing an appropriate language for the development of bioinformatics applications.

The simulation of the liberation and size distribution of shredder products under the material characteristic coding method

  • Ni, Shiuh-Sheng;Wen, Shaw-Bing;Chu, Chung-Cheng
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.693-698
    • /
    • 2001
  • This paper establishes a coding method system including the liberation and size distribution of recycling materials in the shredder operation. Every particle in the shredded product becomes a code number using the liberation model and size distribution equation transforming of weight percentage into particles number percentage. One set of database can be obtained after all particles have been coded. This database is suitable for the size reduction operation in the process simulation of waste recycling. Coupling with the developed air classification, sizing and separating operations, the whole process simulation will be completely established for diversified application. A typical simulation for the rolling cutting shredder product of waste TV had been demonstrated under this coding system. The breakage size distribution of Gaudin and Schumann equation were selected for the shredding operation simulation. The Gaudin's liberation model was suitable fur the liberation simulation. Both of these equations were transformed weight percentage into particles distribution for the necessary of particle coding method. A better recycling operation for this shredded solid waste can be concluded from the comparison of simulation results with their sorted grade, recovery or economic of materials in different processes.

  • PDF

반능동형 레이저 유도 추적에 적합한 레이저 펄스 반복 주파수 검출을 위한 디지털 신호처리 보드 구현 및 표적 좌표 최적화 (Implementation of Digital Signal Processing Board Suitable for a Semi-active Laser Tracking to Detect a Laser Pulse Repetition Frequency and Optimization of a Target Coordinates)

  • 이영주;김용평
    • 전기학회논문지
    • /
    • 제64권4호
    • /
    • pp.573-577
    • /
    • 2015
  • In this paper, we propose a signal processing board suitable for a semi-active laser tracking to detect an optical signal generated from the laser target designator by applying an analog trigger signal, the quadrant photodetector and a high speed ADC(analog-digital converter) sampling technique. We improved the stability by applying the averaging method to minimize the measurement error of a gaussian pulse. To evaluate the performances of the proposed methods, we implemented a prototype board and performed experiments. As a result, we implemented a frequency counter with an error 14.9ns in 50ms. PRF error code has a stability of less than 1.5% compared to the NATO standard. Applying the three point averaging method to ADC sampling, the stability of 28% in X-axis and 22% in Y-axis than one point sampling was improved.

Formulation, solution and CTL software for coupled thermomechanics systems

  • Niekamp, R.;Ibrahimbegovic, A.;Matthies, H.G.
    • Coupled systems mechanics
    • /
    • 제3권1호
    • /
    • pp.1-25
    • /
    • 2014
  • In this work, we present the theoretical formulation, operator split solution procedure and partitioned software development for the coupled thermomechanical systems. We consider the general case with nonlinear evolution for each sub-system (either mechanical or thermal) with dedicated time integration scheme for each sub-system. We provide the condition that guarantees the stability of such an operator split solution procedure for fully nonlinear evolution of coupled thermomechanical system. We show that the proposed solution procedure can accommodate different evolution time-scale for different sub-systems, and allow for different time steps for the corresponding integration scheme. We also show that such an approach is perfectly suitable for parallel computations. Several numerical simulations are presented in order to illustrate very satisfying performance of the proposed solution procedure and confirm the theoretical speed-up of parallel computations, which follow from the adequate choice of the time step for each sub-problem. This work confirms that one can make the most appropriate selection of the time step with respect to the characteristic time-scale, carry out the separate computations for each sub-system, and then enforce the coupling to preserve the stability of the operator split computations. The software development strategy of direct linking the (existing) codes for each sub-system via Component Template Library (CTL) is shown to be perfectly suitable for the proposed approach.