• Title/Summary/Keyword: sucrose.

Search Result 3,457, Processing Time 0.039 seconds

Systematic Propagation of High Quality Garlic (Allium sativum L.) Through Shoot Apical Meristem Culture II. Effects of Sucrose Concentration and Nitrogen Source on In Vitro formation of Bulblets (생장점배양에 의한 우량마늘 체계적 증식 II 기내 인경 비대에 미치는 질소 및 Sucrose의 영향)

  • Lee, Eun-Mo;Lee, Young-Bok
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.4
    • /
    • pp.193-200
    • /
    • 1994
  • The effects of sucrose concentration and nitrogen source on shoot growth and in vitro formation of garlic (Allium sativum L. cv Seosan) bulblet were investigated in order to systematize propagation of high quality garlic through a shoot apical meristem culture. Shoot differentiation was not affected by sucrose concentration and nitrogen source, but plantlets which contain medium of NH$_4$- N or NH$_4$ + NO$_3$ were vigorous and healthy in .appearance. Shoot growth was vigorous in changeing of nitrogen source. The best quality of in vitro bulblets was obtained in culture on the medium containing 8% sucrose and NH$_4$ - N, and the formation of bulblet was more effective when plantlets were subjected to cold treatment before use. NH$_4$-N was a major factor for shoot growth and bulblet development, but NO$_3$-N was not and suppressed $K^{+}$absorption. The level of ethylene production was not affected by different nitrogen sources, however this production was enhanced in medium containing a higher concentration of sucrose.e.

  • PDF

Microtuberization and Acclimatization in the Dioscorea cayenensis Thunb. by the Carbon Source (탄소급원에 의한 얌의 기내 비대근 형성과 순화)

  • Lee, Na Nyum;Kim, Ji Ah;Kim, Yong Wook;Kim, Tae Dong
    • Journal of Plant Biotechnology
    • /
    • v.45 no.2
    • /
    • pp.125-130
    • /
    • 2018
  • In this experiment, we investigated the effects of various carbon sources and concentrations on the microtuber induction and acclimatization of the yam (Dioscorea cayenensis). First, the effects of the in vitro carbon sources and concentrations on the microtuber induction were examined. The highest efficiency of the microtuber induction was obtained in the 7% sucrose treatment, whereas the glucose treatment shows no effect on the microtuber formation. Secondly, the effects of the survival rate and the microtuber formation rate after the acclimatization were examined. The diameter (6.1 mm) and fresh weight (0.5g) of the tuberous root are the highest in the pretreatment of the 7% sucrose. Although the survival rate of the pretreatment of the low concentration sucrose (3% sucrose) is 100 %, the growth and development were inhibited. These results suggest the 7% sucrose treatment is appropriate for the yam microtuber formation and acclimatization. In addition, this protocol could be used for the propagation of virus- or disease-free clones and the multiplication of elite yam cultivars.

Effects of Sucrose on Invertase Expression in Recombinant Saccharornyces cerevisiae (재조합 Saccharomyces cerevisiae에서 Invertase의 발현에 대한 Sucrose의 영향)

  • 임형권;김기홍;서진호
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.417-421
    • /
    • 1992
  • The expression pattern of the cloned SUC2 gene in recombinant Saccharomyces cerevisiae was investigated in a two-stage culture. The recombinant yeast grown in a glucose medium where the SUC2 gene was repressed was harvested and then resuspended in a sucrose medium to induce invertase expression. The maximum activity of 10 units was obtained in a medium containing 2 $g/\ell$ sucrose as a carbon source at $30^{\circ}C$ . The oscillatory behavior of invertase activity in response to glucose concentrations in the second stage was observed. This effect can be attributed to a series of events: invertase expression from the SUC2 gene. sucrose hydrolysis to glucose and fructose by invertase, SUC2 repression by high glucose concentration, invertase induction as a result of depletion of glucose used for the yeast growth. The invertase activity was increased by 72.5% when growth temperature changed from $30^{\circ}C$: to $35^{\circ}C$.

  • PDF

Effect of Nutrient Media and Sucrose Concentration on Shoot Organogenesis in Tomato

  • Bhatia Poonam
    • Journal of Plant Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.57-65
    • /
    • 2005
  • The $F_1$ hybrid Red Coat is one of the most highly sought after cultivars of tomato in Australia and yields up to 7.5 $\cal{kg/plant}$. An experiment was conducted to de-termine the optimal strength and type of growth medium and sucrose concentration for shoot organogenesis of the Red Coat cultivar using cotyledonary explants. Two basal growth media, viz. MS and Gamborg' s $B_5$ at 0, 1/4, 1/2, full or double strength along with sucrose concentrations of 0, 0.5, 1.5, 3 or $5\%$, were evaluated using 25 replications. The main effects of treatment and their mutual interactions were evaluated for the proportion of explants that produced callus and/or shoots, number of shoots produced per explant, callus diameter and shoot height. The explants failed to produce shoots in the absence of mineral nutrient. Only a small proportion of the explants ($6\%$ with $B_5\;and\;3\%$ with MS) regenerated shoots in the absence of sucrose. Lower sucrose concentrations ($0.5-1.5\%$) along with full strength media were optimal for most of the traits studied. The $B_5$ medium outperformed MS medium for shoot organogenesis. For all the traits examined, significant differences in main effects (P < 0.05) and two-way interactions were detected, but no three-way interactions (medium type $\times$ medium concentration $\times$ sucrose concentration) were observed. Sucrose was found essential for the development of chlorophyll. Chlorophyll content increased with an increase in sucrose concentration up to $3\%$ and decreased at $5\%$ sucrose.

Plant Regeneration from Immature Zygotic Embryos of Stewartia koreana Nakai via Somatic Embryogenesis (노각나무(Stewartia koreana Nakai)의 미숙배로부터 체세포배발생에 의한 식물체 재분화)

  • 최은경;박학봉;김광수;이용기
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.2
    • /
    • pp.77-81
    • /
    • 1995
  • When cultured on MS medium supplemented with 0.5 mg/L NAA alone or 1.0 mg/L 2,4-D and 0.5 mg/L BA, immature zygotic embryos of Stewartia koreana formed embryogenic calli and somatic embryos. In investigate effect of sucrose concentration on somatic embryo development, embryogenic calli were transferred to MS basal medium containing 1.5,3, 6 or 9% sucrose. The greatest frequency of somatic embryos was obtained on medium containing 6% sucrose. However addition of 1.5 or 9% sucrose to medium inhibited somatic embryo germination and development into normal plantlet After 5 weeks of hardening culture on medium containing 6% sucrose, somatic embryos were transferred to half strangth MS medium supplemented with 0.1% charcol, wherein these embryo developed into the normal plantlets.

  • PDF

The Induction Time of Sucrose Active Transport System during the Phloem Cell Development in Suspension Cultures of Streptantus tortus Cotyledon (Streptanthus tortus 자엽의 배양세포에서 사부세포 발달동안 Sucrose 능동수송계의 유도 시기)

  • Cho, Bong-Heuy
    • Journal of Plant Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.169-173
    • /
    • 2004
  • Parenchyma cells of Streptanthus tortus suspension cultures possessed the different transport system for aldose-formed D-glucose and for ketose-formed D-fructose. $K_{m}$ value for D-glucose and D-fructose were 0.28mM and 15.02mM, respectively. $K_{m}$ value of D-mannose was 0.44 mM which is similar to the D-glucose transport system, but D-mannose was transported also through its own special uptake system. Parenchyma cells possessed the transport system of L-glucose, but the function of L-glucose was not known at all. Protoplast of parenchyma cells possessed only the monosugars transport system, but didn't possess the disugars, sucrose transport system. Early developing phloem protoplasts possessed glucose and sucrose transport system at the same time. On the contrary, in the complete developed phloem cells disappeared preexisted glucose transport system in the parenchyma cells, only new induced sucrose transport system existed.ted.

Changes of Sucrose Content and Invertase Activity in Leaves of Barley Seedlings under Low Temperature (저온 처리한 보리 유식물 잎의 설탕함량과 Invertase의 활성변화)

  • 이명애
    • Journal of Plant Biology
    • /
    • v.35 no.1
    • /
    • pp.91-95
    • /
    • 1992
  • Changes of contents of reducing sugar and sucrose and activities of sucrose-phosphate synthase, sucrose synthease and invertase from the leaves of barley (Hordeum vulgare L. cv. Chalssal) seedlings grown at $4^{\circ}C$ were investigated, and the property of acid invertase were also examined. In the seedlings grown at $4^{\circ}C$ for 3 days, the contents of reducing sugar and sucrose were increased to 1.3 and 2.4 times, respectively. Activity of acid invertase was decreased markedly by cold treatment while the activities of sucrosephosphate synthase, sucrose synthase, and alkaline invertase were not changed. In acid phosphatase purified partially by ammonium sulfate fractionation and DEAE-Sephacel column chromatography, the $K_m$ value for sucrose was 9.5 mM and the optimum pH and temperature was 5.5 and $35^{\circ}C$ respectively. This enzyme was supposed to be ${\beta}-fructosidase$ by studies on the substrate specificity and the molecular weight was estimated to be 63 Kd by Sephadex G-200 gel chromatography.graphy.

  • PDF

Influences of ethanol and temperature on sucrose-evoked response of gustatory neurons in the hamster solitary nucleus

  • Li, Cheng-Shu;Chung, Ki-Myung;Kim, Kyung-Nyun;Cho, Young-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.603-611
    • /
    • 2021
  • Taste-responsive neurons in the nucleus of the solitary tract (NST), the first gustatory nucleus, often respond to thermal or mechanical stimulation. Alcohol, not a typical taste modality, is a rewarding stimulus. In this study, we aimed to investigate the effects of ethanol (EtOH) and/or temperature as stimuli to the tongue on the activity of taste-responsive neurons in hamster NST. In the first set of experiments, we recorded the activity of 113 gustatory NST neurons in urethane-anesthetized hamsters and evaluated responses to four basic taste stimuli, 25% EtOH, and 40℃ and 4℃ distilled water (dH2O). Sixty cells responded to 25% EtOH, with most of them also being sucrose sensitive. The response to 25% EtOH was significantly correlated with the sucrose-evoked response. A significant correlation was also observed between sucrose- and 40℃ dH2O- and between 25% EtOH- and 40℃ dH2O-evoked firings. In a subset of the cells, we evaluated neuronal activities in response to a series of EtOH concentrations, alone and in combination with 32 mM sucrose (EtOH/Suc) at room temperature (RT, 22℃-23℃), 40℃, and 4℃. Neuronal responses to EtOH at RT and 40℃ increased as the concentrations increased. The firing rates to EtOH/Suc were greater than those to EtOH or sucrose alone. The responses were enhanced when solutions were applied at 40℃ but diminished at 4℃. In summary, EtOH activates most sucrose-responsive NST gustatory cells, and the concomitant presence of sucrose or warm temperatures enhance this response. Our findings may contribute to elucidate the neural mechanisms underlying appetitive alcohol consumption.

Purification and Biochemical Characterization of Sucrose Synthase from the Cytosolic Fraction of Chickpea (Cicer arietinum L. cv. Amethyst) Nodules

  • Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.12-18
    • /
    • 1999
  • Sucrose synthase (EC 2.4.1.13) has been purified from the plant cytosolic fraction of chickpea (Cicer arietinum L. cv. Amethyst) nodules. The native enzyme had a molecular mass of $356{\pm}15kD$. The subunit molecular mass was $87{\pm}2kD$, and a tetrameric structure is proposed for sucrose synthase of chickpea nodule. Optimum activities in the sucrose cleavage and synthesis directions were at pH 6.5 and 9.0, respectively. The purified enzyme displayed typical hyperbolic kinetics with substrates in cleavage and synthesis reactions. Chickpea nodules sucrose synthase had a high affinity for UDP ($K_m$, $8.0{\mu}M$) and relatively low affinities for ADP ($K_m$, 0.23 mM), CDP ($K_m$, 0.87 mM), and GDP ($K_m$, 1.51 mM). The $K_m$ for sucrose was 29.4 mM. In the synthesis reaction, UDP-glucose ($K_m$, $24.1{\mu}M$) was a more effective glucosyl donor than ADP-glucose ($K_m$, 2.7 mM), and the $K_m$ for fructose was 5.4 mM. Divalent cations, such as $Ca^{2+}$, $Mg^{2+}$, and $Mn^{2+}$, stimulated the enzyme activity in both the cleavage and synthesis directions, and the enzyme was very sensitive to inhibition by $HgCl_2$ and $CuSO_4$.

  • PDF

Simultaneous Formation of Fructosyltransferase and Glucosyltransferase in Aureobasidium pullulans

  • Yun, Jong-Won;Kim, Dong-Hyun;Moon, Hye-Yeon;Song, ChiiI-Hyun;Song, Seung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.204-208
    • /
    • 1997
  • Aureobasidium puliulans possesses the capacity for simultaneous formation of fructosyltransferase and glucosyltransferase in various sugar media including sucrose, maltose, glucose and fructose. Among them, sucrose (300 g/1) was the most suitable carbon source for fructosyltransferase production, while fructose (100 g/1) gave the maximal production of glucosyltransferase. There existed a critical concentration for the optimal formation of enzymes in sucrose, glucose and fructose media. By contrast, no effect of maltose concentrations up to 300 g/1 was observed. The specific activity of the glucosyltransferase on maltose medium was highest during the early period of fetmentation, after which a sharp decrease occurred, whereas fructosyltransferase activity on sucrose medium maintained a nearly constant rate for a given culture period. Concomitant production of fructosyltransferase and glucosyltransferase was investigated with different combinations of lower concentrations of sucrose and maltose. Maltose supplementation in sucrose media and sucrose addition to maltose media enhanced the activity ratios of fructosyltransferase to glucosyltransferase as compared to that of non-supplemented media. Several polymers and surfactants were added in an attempt to enhance enzyme production, and supplementation of polyoxyethylene-sorbitan monolaurate (Tween 20) promoted fructosyltransferase production by 20%.

  • PDF