DOI QR코드

DOI QR Code

The Induction Time of Sucrose Active Transport System during the Phloem Cell Development in Suspension Cultures of Streptantus tortus Cotyledon

Streptanthus tortus 자엽의 배양세포에서 사부세포 발달동안 Sucrose 능동수송계의 유도 시기

  • 조봉희 (수원대학교 자연과학대학 생명과학과 기능성생명소재연구소)
  • Published : 2004.06.01

Abstract

Parenchyma cells of Streptanthus tortus suspension cultures possessed the different transport system for aldose-formed D-glucose and for ketose-formed D-fructose. $K_{m}$ value for D-glucose and D-fructose were 0.28mM and 15.02mM, respectively. $K_{m}$ value of D-mannose was 0.44 mM which is similar to the D-glucose transport system, but D-mannose was transported also through its own special uptake system. Parenchyma cells possessed the transport system of L-glucose, but the function of L-glucose was not known at all. Protoplast of parenchyma cells possessed only the monosugars transport system, but didn't possess the disugars, sucrose transport system. Early developing phloem protoplasts possessed glucose and sucrose transport system at the same time. On the contrary, in the complete developed phloem cells disappeared preexisted glucose transport system in the parenchyma cells, only new induced sucrose transport system existed.ted.

유소직 세포들은 aldose인 D-glucose ketose인 D-fructose에 대하여 다른 능동 수송계를 소유하고 있었다. D-glucose와 D-fructose 수송계의 $K_{m}$ 값은 각각 0.28 mM과 15.02mM이었다. D-mannose는 $K_{m}$ 값이 0.44 mM로 D-glucose와 유사하였지만, 그러나 D-glucose와는 다른 수송계를 소유하고 있었다. L-glucose도 고유한 수송계를 통하여 세포내로 수송되었으며, 그러나 그 기능을 전혀 알지 못하고 있다. 유조직 원형질체는 단당류 능동 수송계만을 소유하고, 이당류인 sucrose능동 수송계는 소유하지 않고 있었다. 발달 초기단계에 있는 사부 원형질체는 glucose와 sucrose 수송계를 동시에 소유하고 있었다. 완전히 발달된 사부세포에서는 이미 존재하였던 glucose 능동 수송계는 사라지고, 새로 유도된 sucrose 능동 수송계만 존재하는 것으로 측정되었다.

Keywords

References

  1. Cho BH (1983) Mechanism of proline uptake by Chlorella. Planta 162: 23-39 https://doi.org/10.1007/BF00397416
  2. Cho BH (1987) Analysis of the low affinity system of the uptake of fructose in suspensison culture cells. Kor J Bot 30: 277-285
  3. Cho BH (1996) Phoem differentiation of cell culture of Streptanthus. Kor J Plant Tiss Cult 23: 107-111
  4. Cho BH (1998) Isolation of phloem cell and active transport of sucrose by isolated phloem and parenchyma cells of Streptanthus tortus suspension culture. Kor J Plant Tiss Cult 25: 109-112
  5. Cho BH (2000) Effect of sugar starvation on the sugar transport system in suspension cultures of Streptanthus tortus. Kor J Biotechnol 27: 47-50
  6. Cho BH, Komor E (1985) Comparison of suspension cells and cotyledons of Ricinus with respects to sugar uptake. J Plant Physiol 118: 381-390 https://doi.org/10.1016/S0176-1617(85)80198-X
  7. Cho BH, Sauer N, Komor E, Tanner W (1981) Glucose induced two amino acid transport system in Chlorella. Proc Natl Acad Sci USA 78: 3591-3594 https://doi.org/10.1073/pnas.78.6.3591
  8. Humphreys T, Echeverria E (1984) Invertase and maltase in the free space of the maize scutellum. Phytochemistry 19: 189-193 https://doi.org/10.1016/S0031-9422(00)81958-5
  9. Komor E (1973) Proton coupled hexose transport in Chlorella vulgaris. FEBS Lett 38: 16-18 https://doi.org/10.1016/0014-5793(73)80501-0
  10. Komor E (1977) Sucrose uptake by cotyledon of Ricinus communis L.: Characterization, mechanism and regulation. Planta 47: 1498-1502
  11. Murashige RD, Skoog E (1962) A revised medium for rapid growth and bioassay with tabacco tissue cultures. Physiol Plant 161: 109-417
  12. Nissen P (1978) Multiphasic uptake of amino acid by barley roots. Physiol Plant 43: 181-188 https://doi.org/10.1111/j.1399-3054.1978.tb02561.x
  13. Oxender DL (1972) Membrane transport. Annu Rev Biochem 4: 777-814
  14. Robinson SD, Beevers H (1981) Amino acid transport in germinating castor been seedlings. Plant Physiol 68: 560-566 https://doi.org/10.1104/pp.68.3.560
  15. Tanner W (1969) Light driven active uptake of 3-0-methyl glucose via an inducible hexose uptake system of Chlorella. Biochem Biophys Res Commu 36: 278-283 https://doi.org/10.1016/0006-291X(69)90326-X
  16. Wyse RE and Komor E (1984) Mechanism of amino acid uptake by sugarcane suspension cells. Plant Physiol 76: 865-870 https://doi.org/10.1104/pp.76.4.865