• Title/Summary/Keyword: substructure stiffness

Search Result 111, Processing Time 0.027 seconds

Evaluation on the condition and quality of railway track substructure (궤도노반의 상태 및 품질평가에 관한 연구)

  • Kim, Dae-Sang;Park, Tae-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.346-353
    • /
    • 2005
  • Track substructure(ballast, subgrade) should have sufficient strength and adequate stiffness to fully support track superstructure(rail, fastener, sleeper). Vertical support stiffness of track comes from the sufficient thickness, adequate strength and stiffness of material of substructure layers. Since the vertical support stiffness of track substructure is closely related with the track geometry, the evaluation of the stiffness is very important to understand the track states. This paper introduces the system, which are composed of Ground Penetrating Radar(GPR), Portable Ballast Sampler(PBS), and Light Falling Weight Deflectometer(LFWD), to evaluate substructure condition and summarizes the field test results performed with the reliable system.

  • PDF

Design Loads on Railway Substructure: Sensitivity Analysis of the Influence of the Fastening Stiffness

  • Giannakos, Konstantinos
    • International Journal of Railway
    • /
    • v.7 no.2
    • /
    • pp.46-56
    • /
    • 2014
  • The superstructure of the railway track undertakes the forces that develop during train passage and distributes them towards its seating. The track panel plays a key role in terms of load distribution, while at the same time it maintains the geometrical distance between the rails. The substructure and ballast undergo residual deformations under high stresses that contribute to the deterioration of the so-called geometry of the track. The track stiffness is the primary contributing factor to the amount of the stresses that develop on the substructure and is directly influenced by the fastening resilience. Four methods from the international literature are used in this paper to calculate the loads and stresses on the track substructure and the results are compared and discussed. A parametric investigation of the stresses that develop on the substructure of different types of railway tracks (i.e. balastless vs ballasted) is performed and the results are presented as a function of the total static track stiffness.

Vibration Analysis of Structures Using the Transfer Stiffness Coefficient Method and the Substructure Synthesis Method (전달강성계수법과 부분구조합성법을 이용한 구조물의 진동해석)

  • Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.24-30
    • /
    • 2001
  • The substructure synthesis method(SSM) is developed for overcoming disadvantages of the Finite Element Method(FEM). The concept of the SSM is as follows. After dividing a whole structure into several substructures, every substructures are analyzed by the FEM or experiment. The whole structure is analyzed by using connecting condition and the results of substructures. The concept of the transfer stiffness coefficient method(TSCM) is based on the transfer of the nodal stiffness coefficients which are related to force vectors and displacement vectors at each node of analytical mode1. The superiority of the TSCM to the FEM in the computation accuracy, cost and convenience was confirmed by the numerical computation results. In this paper, the author suggests an efficient vibration analysis method of structures by using the TSCM and the SSM. The trust and the validity of the present method is demonstrated through the numerical results for computation models.

  • PDF

Shaking Table Testing Method Considering the Dynamic Soil-Structure Interaction (건물과 지반의 동적상호작용을 고려한 진동대 실험법에 관한 연구)

  • Lee, Sung-Kyung;Lee, Sang-Hyun;Chung, Lang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.184-191
    • /
    • 2010
  • This paper proposes the shaking table testing method for replicating the dynamic behavior of soil-structure interaction (SSI) system, without any physical soil model and only using superstructure model. Applying original SSI system to the substructure method produces two substructures; superstructure and soil model corresponding to experimental and numerical substructures, respectively. Interaction force acting on interface between the two substructures is observed from measuring the accelerations of superstructure, and the interface acceleration or velocity, which is the needed motion for replicating the dynamic behavior of original SSI system, is calculated from the numerical substructure reflecting the dynamic soil stiffness of soil model. Superstructure is excited by the shaking table with the motion of interface acceleration or velocity. Analyzing experimental results in time and frequency domains show the applicability the proposed methodologies to the shaking table test considering dynamic soil-structure interaction.

  • PDF

Evaluation on the Condition of Track Substructure Using GPR/PBS/LEWD (GPR/PBS/LFWD를 이용한 궤도하부 상태평가)

  • Kim Dae-Sang;Hwang Seon-Keun;Shin Min-Ho;Park Tae-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.163-170
    • /
    • 2005
  • Track substructure (ballast, subgrade) should have sufficient strength and uniform stiffness to fully support track superstructure (rail, fastener, sleeper). Vertical support stiffness of track is strongly influenced by the condition of ballast and subgrade layers. Therefore, the evaluation of the condition of track substructure is very important to evaluate the vertical support stiffness of track. This paper proposes the trackbed evaluation system, which is composed of Ground Penetrating Radar (GPR), Portable Ballast Sample. (PBS), and Light Falling Weight Deflectomete. (LFWD), to diagnose track substructure. The laboratory and field tests are performed to evaluate the applicability of the proposed trackbed evaluation system.

Identification of Substructure Model by Measured Acceleration and Analysis of Its Problem (가속도계측에 의한 부분구조 모델의 설정 및 문제점 분석)

  • 신수봉;오성호;이상민
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.589-594
    • /
    • 2003
  • The paper proposes a methodology of identifying a substructure model of an existing structure when correct sectional and material properties of the structure are not known. A substructure model is identified by estimating boundary spring constants and stiffness properties of the substructure. Both of static and modal system identification methods have been applied using responses measured at limited locations within the substructure. In defining a substructure model it is required that computed structural responses be consistent with the actual behavior of the part of the structure. Simulation studies on a continuous beam structure and an application to an actual bridge have been carried with static and modal responses. The results and associated problems are discussed in the paper

  • PDF

Partial Reanalysis Algorithm with Static Condensation (정적응축기법을 이용한 부분재해석 알고리즘)

  • Kim, Chee-Kyeong;Choi, Dong-In
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.175-181
    • /
    • 2006
  • This paper presents an efficient reanalysis algorithm, named PRAS (Partial Reanalysis algorithm using Adaptable Substructuring), for the partially changed structures. The algorithm recalculates directly any displacement or member force under consideration in real time without a full reanalysis in spite of local changes in member stiffness or connectivity. The key procedures consists of 1) partitioning the whole structure into the changed part and the unchanged part, 2) condensing the internal degrees of freedom and forming the unchanged part substructure, 3) assembling and solving the new stiffness matrix from the unchanged part substructure and the changed members.

  • PDF

Parametric Study on Geogrid-Reinforced Track Substructure

  • Oh, Jeongho
    • International Journal of Railway
    • /
    • v.6 no.2
    • /
    • pp.59-63
    • /
    • 2013
  • The purpose of this paper was to evaluate the effectiveness of geogrid for conventional ballasted track and asphalt concrete underlayment track using PLAXIS finite element program. Geogrid element was modeled at various locations that include subballast/subgrade, subballast/ballast interfaces, middle of the ballast, and one-third depth of the ballast. The results revealed that the effectiveness of geogrid reinforcement appeared to be larger for ballasted track structure compared to asphalt concrete underlayment track. Particularly, in case of installing geogrid at one-third depth of ballast layer in a conventional ballasted track, the most effectiveness of geogrid reinforcement was achieved. The influence of geogrid axial stiffness on track substructure response was not clear to conclude. Further validations using a discrete element method along with experimental investigation are considered as a future study. The effect of asphalt concrete layer modulus was evaluated. The results exhibited that higher layer modulus seems to be effective in controlling displacement and strain of track substructure. However it also yields slightly higher stresses within track substructure. It infers that further validations are required to come up with optimum asphalt concrete mixture design to meet economical and functional criteria.

A Study on Natural Vibration Characteristics of Dome Structure According to Natural Frequency Ratio of Substructure (하부 구조의 고유 진동수비에 따른 돔 구조의 고유 진동 특성에 관한 연구)

  • Park, Kwang-Seob;Kim, Yun-Tae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.75-82
    • /
    • 2018
  • Large space structures exhibit different natural vibration characteristics depending on the aspect ratio of structures such as half-open angle. In addition, since the actual large space structure is mostly supported by the lower structure, it is expected that the natural vibration characteristics of the upper structure and the entire structure will vary depending on the lower structure. Therefore, in this study, the natural vibration characteristics of the dome structure are analyzed according to the natural frequency ratio by controlling the stiffness of the substructure. As the natural frequency of the substructure increases, the natural frequency of the whole structure increases similarly to the natural frequency of the upper structure. Vertical vibration modes dominate at $30^{\circ}$ and $45^{\circ}$, and horizontal vibration modes dominate at $60^{\circ}$ and $90^{\circ}$.

Development of Evaluation Method of Vibration-Reduction Efficiency in Slab Track (슬래브궤도의 방진효율성 평가기법 개발)

  • 양신추;강윤석;김만철;이종득
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.463-470
    • /
    • 1999
  • In this paper, a numerical method for evaluating the efficiency of vibration reduction of substructure under slab track is developed for optimal design of floating slab track. The equation of motion for train and track interaction system is derived by applying compatibility condition at the contact points between wheels and rails. The train is modelled by 3-masses system and the track by continuous support beam system. Numerical analyses are carried out to investigate the effect of train speed, stiffness and damping of slab-pad, and track irregularity upon vibration reduction in substructure under the track.

  • PDF