• Title/Summary/Keyword: subspace method

Search Result 333, Processing Time 0.024 seconds

Blind Signal Subspace Channel Estimation technique for DS-CDMA DMB downlink (DS-CDMA DMB 하향링크에서의 블라인드 신호공간 채널추정 기법)

  • Yang, Wan-Chul;Lee, Byung-Seu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9A
    • /
    • pp.1039-1047
    • /
    • 2004
  • In this paper, we propose a new channel estimation technique for long code DS-CDMA DMB down link system which estimate the channel response based on the signal space vector only, unlike the most conventional sub-space method relying on the orthogonal property of noise space vectors to the signal space vector. Because of this property of the proposed method, very optimum covariance matrix in its dimension can be used in subspace analysis channel estimation technique otherwise it is likely too large to be implemented practically.

A Realization of Reduced-Order Detection Filters

  • Kim, Yong-Min;Park, Jae-Hong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.142-148
    • /
    • 2008
  • In this paper, we deal with the problem of reducing the order of the detection filter for the linear time-invariant system. Even if the detection filter is generally designed in the form of full order linear observer, we show that it is possible to reduce its order when the response of fault signals is limited to a subspace of the estimation state space. We propose a method to extract the subspace using the observer canonical form considering the dynamics related to the remaining subspace acts as a disturbance. We designed a reduced order detection filter to reject the disturbance as well as to guarantee fault detection and isolation. A simulation result for a 5th order system is presented as an illustrative example of the proposed design method.

Performance Analysis of Blind Channel Estimation for Precoded Multiuser Systems

  • Xu, Zhengyuan
    • Journal of Communications and Networks
    • /
    • v.4 no.3
    • /
    • pp.189-198
    • /
    • 2002
  • Precoder has been shown to be able to provide source diversity and design flexibility. In this paper we employ precoding techniques for block transmission based on a multirate filterbank structure. To accommodate multiuser communication with variable data rates, different precoders with corresponding coefficients and up/down sampling rates are used. However, due to unknown multipath distortion, different interferences may exist in the received data, such as multiuser interference, intersymbol interference and interblock interference. To estimate channel parameters for a desired user, we employ all structured signature waveforms associated with different symbols of that user and apply subspace techniques. Therefore better performance of channel estimator can be achieved than the conventional subspace method based only on the signature of the current symbol. The delay for that user can also be jointly estimated. Channel identifiability conditions and asymptotic channel estimation error are investigated in detail. Numerical examples are provided to justify the proposed method. gest either multicode (MC) or multiple processing gain (MPG) mechanism [2], while requiring data rates to be integral multiples of some basic low-rate. In order to support variable rate transmission however, a comprehensive scheme needs to be investigated.

Model order reduction for Campbell diagram analysis of shaft-disc-blade system in 3D finite elements

  • Phuor, Ty;Yoon, GilHo
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.411-428
    • /
    • 2022
  • This paper presents the Campbell diagram analysis of the rotordynamic system using the full order model (FOM) and the reduced order model (ROM) techniques to determine the critical speeds, identify the stability and reduce the computational time. Due to the spin-speed-dependent matrices (e.g., centrifugal stiffening matrix), several model order reduction (MOR) techniques may be considered, such as the modal superposition (MS) method and the Krylov subspace-based MOR techniques (e.g., Ritz vector (RV), quasi-static Ritz vector (QSRV), multifrequency quasi-static Ritz vector (MQSRV), multifrequency/ multi-spin-speed quasi-static Ritz vector (MMQSRV) and the combined Ritz vector & modal superposition (RV+MS) methods). The proposed MMQSRV method in this study is extended from the MQSRV method by incorporating the rotational-speed-dependent stiffness matrices into the Krylov subspace during the MOR process. Thus, the objective of this note is to respond to the question of whether to use the MS method or the Krylov subspace-based MOR technique in establishing the Campbell diagram of the shaft-disc-blade assembly systems in three-dimensional (3D) finite element analysis (FEA). The Campbell diagrams produced by the FOM and various MOR methods are presented and discussed thoroughly by computing the norm of relative errors (ER). It is found that the RV and the MS methods are dominant at low and high rotating speeds, respectively. More precisely, as the spinning velocity becomes large, the calculated ER produced by the RV method is significantly increased; in contrast, the ER produced by the MS method is smaller and more consistent. From a computational point of view, the MORs have substantially reduced the time computing considerably compared to the FOM. Additionally, the verification of the 3D FE rotordynamic model is also provided and found to be in close agreement with the existing solutions.

Advances in solution of classical generalized eigenvalue problem

  • Chen, P.;Sun, S.L.;Zhao, Q.C.;Gong, Y.C.;Chen, Y.Q.;Yuan, M.W.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.211-230
    • /
    • 2008
  • Owing to the growing size of the eigenvalue problem and the growing number of eigenvalues desired, solution methods of iterative nature are becoming more popular than ever, which however suffer from low efficiency and lack of proper convergence criteria. In this paper, three efficient iterative eigenvalue algorithms are considered, i.e., subspace iteration method, iterative Ritz vector method and iterative Lanczos method based on the cell sparse fast solver and loop-unrolling. They are examined under the mode error criterion, i.e., the ratio of the out-of-balance nodal forces and the maximum elastic nodal point forces. Averagely speaking, the iterative Ritz vector method is the most efficient one among the three. Based on the mode error convergence criteria, the eigenvalue solvers are shown to be more stable than those based on eigenvalues only. Compared with ANSYS's subspace iteration and block Lanczos approaches, the subspace iteration presented here appears to be more efficient, while the Lanczos approach has roughly equal efficiency. The methods proposed are robust and efficient. Large size tests show that the improvement in terms of CPU time and storage is tremendous. Also reported is an aggressive shifting technique for the subspace iteration method, based on the mode error convergence criteria. A backward technique is introduced when the shift is not located in the right region. The efficiency of such a technique was demonstrated in the numerical tests.

Mutiple Target Angle Tracking Algorithm Based on measurement Fusion (측정치 융합에 기반을 둔 다중표적 방위각 추적 알고리즘)

  • Ryu, Chang-Soo
    • 전자공학회논문지 IE
    • /
    • v.43 no.3
    • /
    • pp.13-21
    • /
    • 2006
  • Ryu et al. proposed a multiple target angle tracking algorithm using the angular measurement obtained from the signal subspace estimated by the output of sensor array. Ryu's algorithm has good features that it has no data association problem and simple structure. But its performance is seriously degraded in the low signal-to-noise ratio, and it uses the angular measurement obtained from the signal subspace of sampling time, even though the signal subspace is continuously updated by the output of sensor array. For improving the tracking performance of Ryu's algorithm, a measurement fusion method is derived based on ML(Maximum Likelihood) in this paper, and it admits us to use the angular measurements obtained form the adjacent signal subspaces as well as the signal subspace of sampling time. The new target angle tracking algorithm is proposed using the derived measurement fusion method. The proposed algorithm has a better tracking performance than that of Ryu's algorithm and it sustains the good features of Ryu's algorithm.

Subspace Method Based Preceding for Spatial Multiplexing with Limited Feedback (제한된 피드백 정보를 사용하는 공간 다중화를 위한 부 공간 방식 기반 Precoding 기법)

  • Mun Cheol;Seo Jeong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.906-911
    • /
    • 2005
  • In this paper, for spatial multiplexing with limited feedback, we propose subspace method based preceding in which the active bases are selected at the receiver from a finite number of basis sets Down at both receiving and transmitting ends, conveyed to the transmitter using limited feedback, and assembled into a preceding matrix at the transmitter. The selected bases are conveyed to the transmitter using feedback information on both the index of the selected basis set, which defines the most appropriate set of coordinates for describing a multiple-input multiple-output (MIMO) channel, and the principal bases maximizing the capacity in the selected basis set. We show that the proposed subspace method based preceding provides a capacity similar to that of the closed-loop MIMO even with limited feedback.

Output-only modal parameter identification of civil engineering structures

  • Ren, Wei-Xin;Zong, Zhou-Hong
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.429-444
    • /
    • 2004
  • The ambient vibration measurement is a kind of output data-only dynamic testing where the traffics and winds are used as agents responsible for natural or environmental excitation. Therefore an experimental modal analysis procedure for ambient vibration testing will need to base itself on output-only data. The modal analysis involving output-only measurements presents a challenge that requires the use of special modal identification technique, which can deal with very small magnitude of ambient vibration contaminated by noise. Two complementary modal analysis methods are implemented. They are rather simple peak picking (PP) method in frequency domain and more advanced stochastic subspace identification (SSI) method in time domain. This paper presents the application of ambient vibration testing and experimental modal analysis on large civil engineering structures. A 15 storey reinforced concrete shear core building and a concrete filled steel tubular arch bridge have been chosen as two case studies. The results have shown that both techniques can identify the frequencies effectively. The stochastic subspace identification technique can detect frequencies that may possibly be missed by the peak picking method and gives a more reasonable mode shapes in most cases.

A Study on Performance Improvement of Adaptive SLC System Using Eigenanalysis Method and Comparing with RLS Method (Eigenanalysis 방식의 적응 SLC(sidelobe canceller) 시스템의 적용에 따른 성능향상 및 RLS 방식과외 비교에 관한 연구)

  • Jung, Sin-Chul;Kim, Se-Yon;Lee, Byung-Seub
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.2
    • /
    • pp.111-122
    • /
    • 2001
  • In this paper, we study the performance of eigencanceller which use a eigenvector and eigenvalue in order to update a weighter vector. Eigencanceller can suppress directional interferences and noise effectively while maintaining specified beam pattern constraints. The constraints and optimal weight vector of eigencanceller vary by using interference and noise or desired signal, interference signal and noise as array input signal. From the analysis results in the steady state, We show that weight vectors in each case are simplified the form of projection equation that belongs to desired subspace orthogonal to interference subspace and eigencanceller has the better performance than RLS method through mathematical analysis and simulation.

  • PDF

Blind Signal Subspace-Based Channel Identification for DS/CDMA DM Downlink (DS/CDMA DMB 하향 링크에서의 신호 공간에 기초한 블라인드 채널 추정)

  • Yang Wan-Chul;Lee Byung-Seub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.848-855
    • /
    • 2004
  • In this paper, we propose a new channel identification technique for long code DS/CDMA DMB down link system which estimate the channel response based on the signal space vector only, unlike the most conventional subspace method relying on the orthogonal property of noise space vectors to the signal space vector. Because of this property of the proposed method, it is optimum and practical in manipulation of the covariance matrix to be analyzed. In the paper, we derive the mathematical expression necessary to clarify the proposed method and show the relevant simulation and numerical results to verify the validity of the proposed algorithm.