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A Realization of Reduced-Order Detection Filters

Yongmin Kim and Jaehong Park

Abstract: In this paper, we deal with the problem of reducing the order of the detection filter for
the linear time-invariant system. Even if the detection filter is generally designed in the form of
full order linear observer, we show that it is possible to reduce its order when the response of
fault signals is limited to a subspace of the estimation state space. We propose a method to
extract the subspace using the observer canonical form considering the dynamics related to the
remaining subspace acts as a disturbance. We designed a reduced order detection filter to reject
the disturbance as well as to guarantee fault detection and isolation. A simulation result for a 5th
order system is presented as an illustrative example of the proposed design method.

Keywords: Fault detection filter, invariant zero, model reduction, observer canonical form.

1. INTRODUCTION

The detection filter is one of the efficient fault
detection and isolation (FDI) systems that is described
in the form of the Luenberg observer with an
additional condition that the independent subspace of
the error state space, which is called the detection
space, is associated with each fault. Several research
results on the detection filter with their own
definitions of the detection space have been presented
by the mid-1990s [1-4], and the robustness issue has
become an important research topic for the application
of detection filters in the environment where system is
affected by disturbances or noises [5-9].

Here we pay attention to the fact that most of the
detection filters have been proposed based on full
order observers. However, if the range of faults is not
equal to the state space, i.e. the number of system
modes directly driven by the faults is less than the
system order, it is possible to designed a reduced-
order detection filter. As far as we know, the research
results on this topic have not been actively presented.

In this paper, we propose a method to obtain
reduced-order detection filters by extracting the
aforementioned range using the observer canonical
form. We have already presented the result on the
relation between the detection space and the
observability indices in [11]. Applying this result, we
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extract the minimum detection space including the
range of the faults and design a detection filter with
respect to the subspace.

Since the dynamics corresponding to the subspace
not observed by this filter acts as a disturbance, the
detection filter must reject this disturbance for the
sake of its improved performance. In addition, the
observed subsystem should be mutually detectable [1-
3] for arbitrary assignment of error dynamics. The two
existence conditions of the reduced-order detection
filter are as follows: first, disturbance rejection for the
unobserved  subsystem and second, mutual
detectability for observed subsystem.

As an example, we present the design procedure to
obtain a 3rd order detection filter for a 5Sth order
system together with its simulation results to show
that the fault isolation is available using the reduced-
order detection filter.

Since the proposed method is clear and simple from
an analytical point of view, it can reduce computing
resources required in the implementation of detection
filter, in particular, for large-scaled systems.

2. PRELIMINARIES

3.1. Detection filter

In this section, we present preliminary theory of the
detection filter before we discuss the main topic. The
detection filter is normally described based on the
following linear time-invariant system:

(t) = Ax(t) + Bu(t) + F u(0),
(1) = Cx(2),
where x(t)eR”, u(r)eR” and y(1)eRY are the

state, input and output of the system, respectively. A4,
B and C have appropriate dimensions. Fu(t) is

(M

the model of faults, where u(r)eR” is the function
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vector which describes time evolution of the faults
and the column vectors of F eR™", fi(i=1,---,r),

represent the directions through which the faults enter
the system. We define these vectors as the fault event
vectors. For the simplicity of discussion, we assume
that the pair (4,C) is observable and not degenerate.
We also assume that F is output separable, i.e.,
rank(CF) =r [3].

The detection filter is implemented as the following
full-order observer:

3(f) = A%() + Bu(t) + D(y(t) - $(1)),

2
$(0) = CR(), @

where x(r)eR"” and J(r)eRY are the estimated
state and output, respectively. D is the observer gain.

We define the estimation error as e(f) = x(t) — x(¢)
and the output of the detection filter as £(¢) = y(r) -
¥(t). Then, they satisfy the following equation.

é(t)=(4A—-DCe(t)+ F u() 3
e(t) = Ce(t) ®)

If all the eigenvalues of (4- DC) are in the LHP
and u(t)=0, e(t)—>0 and s()>0 as t—>w
for any initial condition of e(0). Meanwhile, if
u(@)#0,e(t) and &(r) have non-zero values, which
enables us to detect the occurrence of faults. In the
detection filter, the gain D is designed to make &£(¢)
maintain fixed directions in the output space with
respect to each element of u(¢). Here we utilize the

smallest controllable space of f; with respect to (4 -
DC), which we define as the detection space of f..
When single fault is considered, the necessary and

sufficient condition for satisfying the aforementioned
condition is the observability of the pair (4,C) [1].
However, an additional condition is required to
accommodate multiple faults. For the case where it is
possible to assign detection spaces for all #; and to
assign all the eigenvalues of (4— DC), we say that
the faults are mutually detectable. This condition can
be described using the invariant zero as follows [2]:

I3
o(4,F,C)~\Ho(4, f;,C) =D, 4)

i=1
where &(-) is the set of invariant zeros of the triple

and W is the union with any common elements

repeated. The gain D for this case is defined as the
detection gain.

3.2. Observer canonical form
The observer canonical form, the dual problem of

the controller canonical form, can be used to define
equivalent class of linear time-invariant systems by
showing the dynamics that can be associated with
each output [10]. In regards to the detection filter, we
analyzed the characteristics of the detection space in
relation with the invariant zero with this canonical
form [11]. Here we present basic the result that will be
referred to in the following discussion. For more
details, refer to [10,11].

If we define the observability indices of the
respective row vectors of C, ¢ (i=1,---,q), as &,

the »n row vectors {ciAj, i=L-,q, j=1,0;}
(4,C) is
observable. The equivalent transform matrix to obtain

its observer canonical form can be derived from these
vectors as follows:

are linearly independent if the pair

T
ega™ |
(5)

where @ wnth order square matrix whose row vectors

~ H-INT T
ng{clra'”a(c]/ll ) 9“'5Cq7"'

represent appropriate linear combination cl.Aj .0
may be calculated as the dual problem of obtaining
the controller canonical form in [10]. We use (4, C)
as the transformation result.

Ay Ay Z1q
A=oa07t=| ¢ | (6)
Ap Ay o Ay
a1 Ga v g
c=co'l={: + " i (7)
C Cqa Gy

where the respective submatrices have the following
structure:

x 1 0 0
P e N
Aii= : O 0 . 1 ) Al]: : . oo 7(8)
y
x 0 0 - 0 x 0 0

g=[1 000 g=[x0-0 ©

where the elements represented by x are appropriate

real numbers. For ¢, they are equal to zero if i< .

The observer canonical form shows some facts of
detection filters such as the relation between
observability indices and detection order [11]. In
particular, in relation with the main topic, it is possible
to determine the system dynamics directly driven by a
fault event vector.
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3. REDUCED-ORDER DETECTION FILTER

3.1. System reduction

When we transform a system into the observer
canonical form, it is possible to extract the subspace
which is directly driven by a fault 1 problem matrix
defined in the above section and divide it according to
the observability indices as follows:

F=oF =[RT & - ﬁqT]T, (10)

where the row dimensions of F, -+, F, are equal to

815 Oy
For the simplicity of discussion, assume that
F#0 (i=l-+,95) and F;=0 (i=g5+L-,q).

Then, we divide the system into two parts of

respectively.

dimensions ;= ;1_‘51 0; and my=n-n.

A=0407" [’f“ 412}, C CQ“_[C1 cz],
Ay Ay

om | B 5 p_| B

B=0B L’éj’ F=0 {0}’ (11)

where 4;; e R™" and the rest of submatrices have

appropriate dimensions. Note that we always
transform (6), (7) and (10) into the above using an
appropriate unitary matrix.

Define a new state vector as ¥(t) £ Ox(¢) =[% (t)T
% (N' ), where %(f)e R™. Then, the new system

is given as follows:

X () = A % (1) + A%, (1) + Bu(t) + Fu(r), (12a)

%) (1) = Ay Xy (1) + Ay % () + Byu(t), (12b)
7(6)= G5 () + C% (). (12¢)

Since x(f) erange(F;), u(f) directly drives the
trajectory of X (r), while u(z) is filtered by the
subsystem of X,(f) in (12b).

Now we propose a detection filter that observes
only X (¢).

% () = 4 % (0)+ Bu@)+ D@ -CGE @), (13)

where )Lcl(t) is the estimated state of X;(f). Even if
the order of the detection filter is reduced from #n to
ny, there is no restriction on implementation since
we use the system input u(f) and the output y(¢).
Moreover, since CF =C~’11:"1, the output separability
of the original system is preserved.

With the definition of the estimation error as
El(t)éfl(t)—ie'l(t), we obtain the following error
equation:

a(t)=(4; - DG () + (A - DiCy)% ()
+ Fu().

In comparison with (3), the additional term of ¥, ()

exists, which can be considered as a disturbance of
this filter. To obtain fault detection and isolation with
the reduced-order detection filter in (13), it should
satisfy the following two conditions:

1) Disturbance rejection:

(14)

212 - 13162 = 0
2) Mutual detectability
o4, K,.C)-W o(4), £,.C) =2,

where f;; is the ith column vector of F.

3.2. Detection filter design

In this section, we discuss the existence condition
of the reduced-order detection filter presented in
Section 3.1 and present its design procedure. We

divide C and D; according to m and n, as
follows:

~ ¢, ol - rx =
c=|m | p=[hH . (15)
{Cﬂ C2j ] [ 1 D12:|

As in (8) and (9), since most of the column vectors of

C are zero vectors, we define the following index set
to refer the non-zero vectors.

o~ Co k
Smmy ={ i |l=1+zj=15j,k=m1 =1, my —1}
(16)

Then, the column vectors of C corresponding to
3, are the left-most vectors in the respective blocks.

With the division in (15), the condition of
disturbance rejection is changed into

A —DiCy = 4 — D Cy =0. (17)

In order to simplify the calculation, we modify ;112

and C,, as follows:
Ay 2 420r, Cpp 200y, (18)
where Qp e R™979) s defined as

Or é{e,’? lkeS (19)

45tlg } ’
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where ;2 is a unit vector of order n, that dnly kth
element is equal to one. Oy is used to collecting the

column vectors in ;112 that are denoted by x in (8)

and non-zero column vectors in Cs, . Since Cy, isa

(9—qs) th order square matrix whose diagonal
elements are equal to one, it is invertible.

Therefore, the unknown D, can be calculated as
follows:

Dyy = 4,Cp7" (20)

From the characteristics of the observer canonical
form, it can be shown that the structure of

(4 —~D\C)) is the same as that of A, except that
the elements corresponding to x in (8), which means
that the observability of (4,C;;) is preserved
irrespective of D;,C,,.

Rewriting (14) as

& (1) = (41 —DyyCy)) - Dy C1)E (0) + Fu(r), (21)

we have D, as the design parameter to obtain

reduced-order detection filter since (4, — D,Cyy) is
determined with (20).

In this stage, the second condition of the existence
of the reduced-order detection filter can be presented,
which is summarized by the following theorem.

Theorem 1: F in (4,F,C;) is mutually
detectable if and only if F in (4,F,C) is mutually
detectable.

Proof: The proof can be given if we show that the
same solution for the Rosenbrock system equation to
obtain invariant zeros and zero vectors. As given in
[13], since the set of invariant zeros are independent
of the equivalent transform, we consider matrix using

(Z,F,é) instead of (4,F,C).

4y - AL, Ay Ay
Ay Ay —AL, 0| v |=0, (22)
4 G

where [, is the kth order identity matrix. A complex
number A satisfying the above matrix equation is an

invariant zero of the triple (4, F,C).

T

v v2T ]T € R"is the invariant zero vector (direction)

associated with A

and weR” contains the

corresponding linear combination coefficients of F].

Since [C’l C‘z] is a lower triangular matrix, if we

exclude the column vectors corresponding to 3, .,
the elements of v; and v, corresponding to 3, ,
are equal to zero from C~'1v1 + C~’2v2 =0.

With this result, ;121"1 =0 and ,:1121/2 =0 since the
column vectors of A,; and 4, excluding 3iq

are equal to zero. Extracting the term including v, in
(22), we obtain

Ayy — AL
22 _ n2 V2:0
G

We know that (4,C) is

observable considering the characteristics of the
observer canonical form.

An— Ay R {“}:o (23)
G 0|Lw

Note that Cpyy = C~'11V1 =0 from the fact that the

v, =0 if the pair

column ranks of Cj; and C,; are the same; we can

replace C; with Cj;. This means that the solution
of the system matrix for (4,F,C) can also be applied to
(41,F,Cy,), which completes the proof. a
This theorem means that the mutual detectability of
the triple (4,F,C) is inherited to the reduced triple
(41,F,Cy)). As for the second existence condition,

we can conclude that the original system should be
mutually detectable in order to arbitrarily assign the
eigenvalues of the reduced-order detection filter
proposed in (21).

4. DESIGN PROCEDURE

In this section, we summarize the arguments in
Section III and present a design procedure for the
reduced-order detection filter.

1) Examine the mutual detectability of (4,F,C). If

not, modify the system to be mutually detectable.
2) Calculate @ in(5).
3) Calculate F in (10). Check that there exists
F. =0. Ifnot, stop.
4) Rearrange (A4,F,C) as in (11) with O and an
appropriate equivalent transform.
5) Calculate Qr in(19)and Dy, in (20).
6) With the triple (4, - D2Cy1,5,Cpy), calculate
Dy, using the well-known design methods.
In the case that (A4,F,C)
detectable, more than two column vectors of F are

is not mutually
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u{t)

Fig. 1. Structure of the reduced-order detection filter.

associated with one invariant zero. If this invariant
zero, which will be a fixed closed-loop eigenvalue
that can not be moved by the detection gain, is located
in the RHP, the dynamics depicted in (14) become
unstable. In this case, we can use the method to
expand the system dynamics to increase the geometric
multiplicity of the zero. For the details on the
invariant zero and mutual detectability, refer to [3].
The structure of the proposed detection filter is
given as in Fig. 1. In this figure, W, is a
transformation making the final residual, generally

given as (C~’11‘:“1)T where 7 is the pseudo- or left
inverse.

5. AN ILLUSTRATIVE EXAMPLE

In this section, we present an illustrative example to
show the design procedure, we consider the following
5th order system.

[-0.750 —0.375 1.875 -1.125 —0.625
3250 1125 1375 -0.625 -0.125

A=| 1750 -0.125 -0.375 2.625 1.125|,
0.750 —0.625 1.125 0.125 —-0.375
|-0.750  1.125 -4.625 5375 3.875
(24)

i -0.250 -0.375

1 1 -1 0 1 1.750  1.125
C=|1 1 =2 2 2|, F=| 0250 -0.125|.
0 -1 0 30 0250 0.375

- -0.250  0.125
(25)

The observability indices of the pair (4,C) are
given for the respective row vectors as & =2,
0, =1 and J&; =2. The index set in (16) is given as
313 =1{1,3,4}. Since the sum of the indices is equal

to 5, this system is observable. The observer canonical
form of this system is given as follows:

11 1 00
|20 0 30
A= 00 2 -1 0], (26)
10 -1 11

10 4 00

11
10000 |21
=l 1010 0], F=|0 1}, 7)
10110 00
0 0

where we omit the detailed calculation with the
transformation matrix Q.

From the result, we can include the first three row
vectors of F (8, +8,=3) for the reduced-order
detection filter.

ot 1] - [1o0] _ [11
A,=12 0 0|, G=| 1 0 1, F=[2 1.
0 0 2 10 1 01

(28)
For the extracted triple (211,1:"1,5’1 ), the invariant
zero associated with the first column vector of £ is

equal to —2 while there exists no zero associated
with the second vector. We define the two fault event

vectors as fj; and f;, and their detection spaces as

Dfn 2’

is mutually detectable.
Since C,, =[1 0], C~'22_1 =1, D, and the resulting
closed-loop system are given as follows:

and D 7 respectively. It is easy to check ]7“1

. - 0 . o 1 1 1
Dy =4,=| 3|, (4:-D;pGyy)=| 5 0 3,
1 -1 0 3

Df~11 =span([f11 Vz]) and Dﬁz zspan(fiz), where

v, is the invariant zero vector of (;111,151,(?1). We
assign two closed-loop eigenvalues of —3 and -4

in associated with D~1 while the one of -5 with

A’

D Let us calculate the corresponding detection

Na
gain using eigenvalue assignment method as in [9].
One of the right eigenvectors associated with D 7 is

given as linear combinations of fault event vector and
the invariant zero vector while the eigenvector for

D];12 is f1o itself.

1 0 |
W= fit @A, ={2}+(<—2>—<—3)>{1H3}
3 0 0

where /111 and 17]1 are the eigenvalue and

eigenvector associated with D~11, respectively. z

is the invariant zero associated with ¥,. Then the

detection gain for fault detection and isolation is given
as follows:
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- - - . o 8 0
Dyy = ((dyy = DaCoy)V -V AXC )T ={27 —10],
-9 8

where V' and A are the matrices made up of the
eigenvectors and eigenvalues, respectively.

11
y=13 1|, A:[_g 2}
01 -

Finally, the detection gain for the reduced-order
detection filter is given as

L 8 0 0
[Dll D]z]: 27 _10 3 .
-9 8 -1
To obtain fault isolation intuitively, we apply the

following projection matrix, which corresponds to
W, inFig. 1 as follows:

{rcm(f)

e (t)

}é () e). (29)

fime {sec)

Fig. 2. Fault signal and corresponding residual for f,.

time (sec)

Fig. 3. Fault signal and corresponding residual for f.

If we use the above residual, there exists one-to-one
correspondence of f] 1= 7oy and f5 3 Fogo.

Figs. 2 and 3 show the simulation results, where the
proposed 3rd order detection filter is applied as in Fig,

1. w(t) is chosen as a sinusoidal function of
amplitude 0.6 starting from 11 seconds; u,(f) is a

step function of amplitude 1 starting from 5 seconds.
In these figures, the upper graphs correspond to the
fault signals and the lower ones to the respective
residuals. We see that fault detection and isolation is
perfectly obtained with this detection filter except that
the phase of the residuals is inverted with respect to
the corresponding fault signals.

6. CONCLUDING REMARKS

We have presented a method to reduce the order of
detection filter for linear time-invariant systems. We
have shown that a part of system directly affected by a
fault event vector can be determined by the observer
canonical form, and proposed a general form of
detection filter to diagnose that system part. We
consider the dynamics associated with the unobserved
subsystem as a disturbance, the solution of
disturbance rejection as well as the condition of
mutual detectability has been presented. As an
illustrative example, we designed a 3rd order
detection filter for a Sth order system following the
procedure summarized here, and showed by
simulation that its performance is satisfactory. The
proposed method is clear and simple from an
analytical point of view and so is deemed applicable
in the case of large-scaled system diagnosis, for
reducing the computing resources required in
implementation of detection filter.

REFERENCES

[1] R. V. Beard, Failure Accommodation in Linear
Systems  through Self-reorganization, Ph.D.
Dissertation, Dep. Aeronautics and Astronautics,
Mass. Inst. Technology, Cambridge, MA, 1971.

[2] M. Massoumnia, “A geometric approach to the
synthesis of failure detection filters,” [EEE
Trans. on Automatic Control, vol. AC-31, no. 9,
pp- 839-846, 1986.

[3] J. E. White and J. L. Speyer, “Detection filter
design: Spectral theory and algorithms,” IEEE
Trans. on Automatic Control, vol. AC-32, no. 7,
pp. 593-603, July 1987.

[4] J. Park and G Rizzoni, “An eigenstructure
assignment algorithm for the design of fault
detection filters,” IEEE Trans. on Automatic
Control, vol. AC-39, no. 7, pp. 1521-1524, July
1994.

[5] R. K. Douglas and J. L. Speyer, “Robust fault
detection filter design,” Proc. of the American



148

(6]

[7]

(8]

[9]

[10]
[11]

[12]

[13]

Yongmin Kim and Jaehong Park

Control Conference, vol. 1, pp. 91-96, June 1995.
J. Chen, R. J. Patton, and H.-Y. Zhang, “Design
of unknown input observers and robust fault
detection filters,”  International Journal of
Control, vol. 63, no. 1, pp. 85-105, 1996.

W. H. Chung and J. L. Speyer, “A game
theoretic fault detection filter,” IEEE Trans. on
Automatic Control, vol. 43, no. 2, pp. 143-161,
February 1998.

I. Y. Keller, “Fault isolation filter design for
linear stochastic systems,” Automatica, vol. 35,
pp. 1701-1706, 1999.

Y. Kim and J. Park, “On the noise response of
detection filters: A special consideration on the
relation between detection space and completion
space,” IEE Proceedings - Control Theory and
Applications, vol. 150, no. 4, pp. 443-447, 2003.
T. Kailath, Linear Systems, Prentice-Hall, 1980.
Y. Kim and J. Park, “On the approximation of
fault directions for mutual detectability: An
invariant zero approach,” IEEE Trans. on
Automatic Control, vol. 50, no. 6, pp. 851-855,
2005.

Y. Kim, 4 Study on the Analysis of
FEigenstructure and the Enhancement of
Robustness in Fault Detection Filters Using
Invariant Zeros, Ph.D. Dissertation, School of
Electrical Engineering, Seoul National Univer-
sity, Seoul, Korea, 2004.

C.-T. Chen, Linear System Theory and Design,
Holt-Saunders Inter. Ed., New York, 1984.

Yongmin Kim received the B.S., M.S.,
and Ph.D. degrees in Electrical
Engineering from Seoul National
University. Since he founded Nano
Tronix Co., Ltd. in 2000, he has been
the Chief Technical Officer of the
company. His research interests
include linear control and estimation,
fault diagnosis, communication test
equipments and automotive electronics.

Jachong Park received the B.S.
degree in Control & Instrumentation
Engineering from Seoul National
University, the M.S. degree in
Electrical Engineering from University
of Michigan, and the Ph.D. degree in
Electrical Engineering and Computer
Science from University of Michigan.
He joined and currently working as a
Professor in School of Electrical Engineering and Computer
Science in Seoul National University. His research interests
include fault diagnosis, precise instrumentation and
automotive electronics & control.



