• Title/Summary/Keyword: subspace method

Search Result 333, Processing Time 0.026 seconds

Development of System Analysis for the Application of MDO to Crashworthiness (자동차 충돌문제에 MDO를 적용하기 위한 시스템 해석 방법 개발)

  • 신문균;김창희;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.210-218
    • /
    • 2003
  • MDO (multidisciplinary design optimization) technology has been proposed and applied to solve large and complex optimization problems where multiple disciplinaries are involved. In this research. an MDO problem is defined for automobile design which has crashworthiness analyses. Crash model which are consisted of airbag, belt integrated seat (BIS), energy absorbing steering system .and safety belt is selected as a practical example for MDO application to vehicle system. Through disciplinary analysis, vehicle system is decomposed into structure subspace and occupant subspace, and coupling variables are identified. Before subspace optimization, values of coupling variables at given design point must be determined with system analysis. The system analysis in MDO is very important in that the coupling between disciplines can be temporary disconnected through the system analysis. As a result of system analysis, subspace optimizations are independently conducted. However, in vehicle crash, system analysis methods such as Newton method and fixed-point iteration can not be applied to one. Therefore, new system analysis algorithm is developed to apply to crashworthiness. It is conducted for system analysis to determine values of coupling variables. MDO algorithm which is applied to vehicle crash is MDOIS (Multidisciplinary Design Optimization Based on Independent Subspaces). Then, structure and occupant subspaces are independently optimized by using MDOIS.

On Construction of Anti-jam and Multipath Mitigation GNSS receiver by Subspace Projection (Subspace Projection을 이용한 전파방해신호 제거와 다중경로 간섭신호 제거 GNSS 수신기 설계)

  • Shin, Jeong-Hwan;Heo, Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.24-30
    • /
    • 2006
  • This paper considers interference suppression and multipath mitigation in Global Navigation Satellite Systems (GNSSs). We propose an anti-jam GNSS receiver which suppresses interference and multipath by subspace projection method. The resulting interference suppressed and multipath mitigated signal is then process by a beamformer, whose weight vector maximizes the signal-to-noise ratio of the output signal. The enhanced performance is shown by refined cross correlation and beam pattern.

An Efficient Pruning Method for Subspace Skyline Queries of Moving Objects (이동 객체의 부분차원 스카이라인 질의를 위한 효율적인 가지치기 기법)

  • Kim, Jin-Ho;Park, Young-Bae
    • Journal of KIISE:Databases
    • /
    • v.35 no.2
    • /
    • pp.182-191
    • /
    • 2008
  • Most of previous works for skyline queries have focused only on static attributes of target objects. With the advance in mobile applications, however, the need of continuous skyline queries for moving objects has been increasing. Even though several techniques to process continuous skyline queries have been proposed recently, they cannot process subspace queries, which use only the subset of attribute dimensions. Therefore it is not feasible to utilize those methods for mobile applications which must consider moving objects and subspaces simultaneously. In this paper, we propose a dominant object-based pruning method to compute subspace skyline of moving objects efficiently at query time and present the experimental results to show the effectiveness of the proposed method.

Mixed Model Reduction to Improve Steady-State Behaviour of RLC Circuits

  • Lee, Won-Kyu;Victor Sreeram
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.75.1-75
    • /
    • 2002
  • Several model order reduction methods for large RLC circuits have been developed in the last few years. Krylop subspace based methods are extremely effective for generating the low order models of large system but there is no optimal theory for the resulting models. Alternatively, methods based truncated balanced realization have an optimality property but are too computationally expensive to use on complicated problems such as large RLC circuits. In this paper, we present a method for improving time domain response of reduced order RLC circuits. The method used here is based on combing Krylop subspace based method and truncated balanced realization method plus residualization. The metho...

  • PDF

Subspace Projection-Based Clustering and Temporal ACRs Mining on MapReduce for Direct Marketing Service

  • Lee, Heon Gyu;Choi, Yong Hoon;Jung, Hoon;Shin, Yong Ho
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.317-327
    • /
    • 2015
  • A reliable analysis of consumer preference from a large amount of purchase data acquired in real time and an accurate customer characterization technique are essential for successful direct marketing campaigns. In this study, an optimal segmentation of post office customers in Korea is performed using a subspace projection-based clustering method to generate an accurate customer characterization from a high-dimensional census dataset. Moreover, a traditional temporal mining method is extended to an algorithm using the MapReduce framework for a consumer preference analysis. The experimental results show that it is possible to use parallel mining through a MapReduce-based algorithm and that the execution time of the algorithm is faster than that of a traditional method.

FOURTH ORDER ELLIPTIC BOUNDARY VALUE PROBLEM WITH SQUARE GROWTH NONLINEARITY

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.323-334
    • /
    • 2010
  • We give a theorem for the existence of at least three solutions for the fourth order elliptic boundary value problem with the square growth variable coefficient nonlinear term. We use the variational reduction method and the critical point theory for the associated functional on the finite dimensional subspace to prove our main result. We investigate the shape of the graph of the associated functional on the finite dimensional subspace, (P.S.) condition and the behavior of the associated functional in the neighborhood of the origin on the finite dimensional reduction subspace.

Model Order Reduction Using Moment-Matching Method Based on Krylov Subspace and Its Application to FRF Calculation for Array-Type MEMS Resonators (Krylov 부공간에 근거한 모멘트일치법을 이용한 모델차수축소법 및 배열형 MEMS 공진기 주파수응답함수 계산에의 응용)

  • Han, Jeong-Sam;Ko, Jin-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.436-441
    • /
    • 2008
  • One of important factors in designing array-type MEMS resonators is obtaining a desired frequency response function (FRF) within a specific range. In this paper Krylov subspace-based model order reduction using moment-matching with non-zero expansion points is represented to calculate the FRF of array-type resonators. By matching moments at a frequency around a specific range of the array-type resonators, required FRFs can be efficiently calculated with significantly reduced systems regardless of their operating frequencies. In addition, because of the characteristics of moment-matching method, a minimal order of reduced system with a specified accuracy can be determined through an error indicator using successive reduced models, which is very useful to automate the order reduction process and FRF calculation for structural optimization iterations.

  • PDF

Investigation of Convergence of Starting Iteration Vectors for Calculating Natural Modes (고유모드 계산을 위한 초기 반복벡터의 수렴성 연구)

  • Kim, Byoung-Wan;Kyoung, Jo-Hyun;Hong, Sa-Young;Cho, Seok-Kyu;Lee, In-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.717-720
    • /
    • 2004
  • Two modified versions of subspace iteration method using accelerated starting vectors are proposed to efficiently calculate free vibration modes of structures. Proposed methods employ accelerated Lanczos vectors as starting iteration vectors in the subspace iteration method. To investigate the efficiency of proposed methods, two numerical examples are presented.

  • PDF

A survey on unsupervised subspace outlier detection methods for high dimensional data (고차원 자료의 비지도 부분공간 이상치 탐지기법에 대한 요약 연구)

  • Ahn, Jaehyeong;Kwon, Sunghoon
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.507-521
    • /
    • 2021
  • Detecting outliers among high-dimensional data encounters a challenging problem of screening the variables since relevant information is often contained in only a few of the variables. Otherwise, when a number of irrelevant variables are included in the data, the distances between all observations tend to become similar which leads to making the degree of outlierness of all observations alike. The subspace outlier detection method overcomes the problem by measuring the degree of outlierness of the observation based on the relevant subsets of the entire variables. In this paper, we survey recent subspace outlier detection techniques, classifying them into three major types according to the subspace selection method. And we summarize the techniques of each type based on how to select the relevant subspaces and how to measure the degree of outlierness. In addition, we introduce some computing tools for implementing the subspace outlier detection techniques and present results from the simulation study and real data analysis.

A Subspace-based Array Shape Estimation Method Using Nearfield Source Model (근거리 신호 모델을 이용한 부공간 근사 기반의 어레이 형상 추정 기법)

  • 박희영;오원천;강현우;윤대희;이충용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.125-133
    • /
    • 2004
  • Most of the way shape estimation method using reference sources assume that the reference sources are in the farfield. That is, the reference sources are assumed to be far from the array. However, in applications of the array with reference sources, the reference sources are not far from the way, so that in practical ocean environments, the conventional method using farfield source model fail to estimate the positions of the hydrophones. In this paper, based on the nearfield source model, a subspace-based array shape estimation method was proposed. In the proposed method, nearfield reference source is modeled using the differential time delay at each hydrophone, and nearfield parameters are derived. Using these parameters, a subspace-based array shape estimation method that generalizes the existing farfield subspace fitting method which can work regardless of the range of the source is proposed. The Cramer-Rao lower bound for the proposed method is investigated. The results of the numerical experiments indicate that the proposed method performs well in estimating the shape of a perturbed way regardless of the ranges of the reference sources.