• Title/Summary/Keyword: subspace method

Search Result 333, Processing Time 0.03 seconds

Pose Identification Using Isometric Projection

  • Islam, Ihtesham-Ul;Kim, In-Taek
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.979-980
    • /
    • 2008
  • In this paper we use the Isometric Projection, a linear subspace method, for manifold representation of the pose-varying-faces. Isometric Projection method for pose identification is evaluated on view varying faces and is compared with other global and local linear subspace methods.

  • PDF

SIX SOLUTIONS FOR THE SEMILINEAR WAVE EQUATION WITH NONLINEARITY CROSSING THREE EIGENVALUES

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.361-369
    • /
    • 2012
  • We get a theorem which shows the existence of at least six solutions for the semilinear wave equation with nonlinearity crossing three eigenvalues. We obtain this result by the variational reduction method and the geometric mapping defined on the finite dimensional subspace. We use a contraction mapping principle to reduce the problem on the infinite dimensional space to that on the finite dimensional subspace. We construct a three-dimensional subspace with three axes spanned by three eigenvalues and a mapping from the finite dimensional subspace to the one-dimensional subspace.

Handwritten Numeral Recognition Using Karhunen-Loeve Transform Based Subspace Classifier and Combined Multiple Novelty Classifiers (Karhunen-Loeve 변환 기반의 부분공간 인식기와 결합된 다중 노벨티 인식기를 이용한 필기체 숫자 인식)

  • 임길택;진성일
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.6
    • /
    • pp.88-98
    • /
    • 1998
  • Subspace classifier is a popular pattern recognition method based on Karhunen-Loeve transform. This classifier describes a high dimensional pattern by using a reduced dimensional subspace. Because of the loss of information induced by dimensionality reduction, however, a subspace classifier sometimes shows unsatisfactory recognition performance to the patterns having quite similar principal components each other. In this paper, we propose the use of multiple novelty neural network classifiers constructed on novelty vectors to adopt minor components usually ignored and present a method of improving recognition performance through combining those with the subspace classifier. We develop the proposed classifier on handwritten numeral database and analyze its properties. Our proposed classifier shows better recognition performance compared with other classifiers, though it requires more weight links.

  • PDF

Dynamic Subspace Clustering for Online Data Streams (온라인 데이터 스트림에서의 동적 부분 공간 클러스터링 기법)

  • Park, Nam Hun
    • Journal of Digital Convergence
    • /
    • v.20 no.2
    • /
    • pp.217-223
    • /
    • 2022
  • Subspace clustering for online data streams requires a large amount of memory resources as all subsets of data dimensions must be examined. In order to track the continuous change of clusters for a data stream in a finite memory space, in this paper, we propose a grid-based subspace clustering algorithm that effectively uses memory resources. Given an n-dimensional data stream, the distribution information of data items in data space is monitored by a grid-cell list. When the frequency of data items in the grid-cell list of the first level is high and it becomes a unit grid-cell, the grid-cell list of the next level is created as a child node in order to find clusters of all possible subspaces from the grid-cell. In this way, a maximum n-level grid-cell subspace tree is constructed, and a k-dimensional subspace cluster can be found at the kth level of the subspace grid-cell tree. Through experiments, it was confirmed that the proposed method uses computing resources more efficiently by expanding only the dense space while maintaining the same accuracy as the existing method.

Efficient DOA Estimation of Coherent Signals Using ESPRIT (ESPRIT을 이용한 효율적인 코히런트 신호의 도래각 추정)

  • Choi, Yang-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.164-171
    • /
    • 2012
  • ESPRIT(Estimation of Signal Parameter via Rotational Invariance Techniques) estimates DOAs(directions of arrival) of the incident signals on a sensor array by exploiting the shift invariance between its two subarrays. This paper suggests an efficient DOA estimation method based on ESPRIT when coherent signals impinge on the sensor array. When applying ESPRIT, it is necessary to find a signal subspace. Though the widely known SS(spatial smoothing) method allows us to obtain a signal subspace in the presence of coherent signals, its computational complexity is very high. Recently a CV(correlation vector) based method has been presented which is computationally simple. However, the number of resolvable signals in the method is smaller than that in the SS based method when multiple coherent signal groups are present. The proposed method in this paper, which obtains a signal subspace by utilizing only part of the correlation matrix, significantly reduces the computational complexity as compared with the SS based one, while the former is resolving the same number of coherent signals as the latter,

Eigenspace-Based Adaptive Array Robust to Steering Errors By Effective Interference Subspace Estimation (효과적인 간섭 부공간 추정을 통한 조향에러에 강인한 고유공간 기반 적응 어레이)

  • Choi, Yang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.269-277
    • /
    • 2012
  • When there are mismatches between the beamforming steering vector and the array response vector for the desired signal, the performance can be severely degraded as the adaptive array attempts to suppress the desired signal as well as interferences. In this paper, an robust method is proposed for the adaptive array in the presence of both direction errors and random errors in the steering vector. The proposed method first finds a signal-plus-interference subspace (SIS) from the correlation matrix, which in turn is exploited to extract an interference subspace based on the structure of a uniform linear array (ULA), the effect of the desired signal direction vector being reduced as much as possible. Then, the weight vector is attained to be orthogonal to the interference subspace. Simulation shows that the proposed method, in terms of signal-to-interference plus noise ratio (SINR), outperforms existing ones such as the doubly constrained robust Capon beamformer (DCRCB).

Investigation of Efficiency of Starting Iteration Vectors for Calculating Natural Modes (고유모드 계산을 위한 초기 반복벡터의 효율성 연구)

  • Kim, Byoung-Wan;Kyoung, Jo-Hyun;Hong, Sa-Young;Cho, Seok-Kyu;Lee, In-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.112-117
    • /
    • 2005
  • Two modified versions of subspace iteration method using accelerated starting vectors are proposed to efficiently calculate free vibration modes of structures. Proposed methods employ accelerated Lanczos vectors as starting iteration vectors in order to accelerate the convergence of the subspace iteration method. Proposed methods are divided into two forms according to the number of starting vectors. The first method composes 2p starting vectors when the number of required modes is p and the second method uses 1.5p starting vectors. To investigate the efficiency of proposed methods, two numerical examples are presented.

AN ITERATIVE METHOD FOR SYMMETRIC INDEFINITE LINEAR SYSTEMS

  • Walker, Homer-F.;Yi, Su-Cheol
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.375-388
    • /
    • 2004
  • For solving symmetric systems of linear equations, it is shown that a new Krylov subspace method can be obtained. The new approach is one of the projection methods, and we call it the projection method for convenience in this paper. The projection method maintains the residual vector like simpler GMRES, symmetric QMR, SYMMLQ, and MINRES. By studying the quasiminimal residual method, we show that an extended projection method and the scaled symmetric QMR method are equivalent.

Image quality enhancement using signal subspace method (신호 부공간 기법을 이용한 영상화질 향상)

  • Lee, Ki-Seung;Doh, Won;Youn, Dae-Hee
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.72-82
    • /
    • 1996
  • In this paper, newly developed algorithm for enhancing images corrupted by white gaussian noise is proposed. In the method proposed here, image is subdivided into a number of subblocks, and each block is separated into cimponents corresponding to signal and noise subspaces, respectively through the signal subspace method. A clean signal is then estimated form the signal subspace by the adaptive wiener filtering. The decomposition of noisy signal into noise and signal subspaces in is implemented by eigendecomposition of covariance matrix for noisy image, and by performing blockwise KLT (karhunen loeve transformation) using eigenvector. To reduce the perceptual noise level and distortion, wiener filtering is implementd by adaptively adjusting noise level according to activity characteristics of given block. Simulation results show the effectiveness of proposed method. In particular, edge bluring effects are reduced compared to the previous methods.

  • PDF

ITERATIVE FACTORIZATION APPROACH TO PROJECTIVE RECONSTRUCTION FROM UNCALIBRATED IMAGES WITH OCCLUSIONS

  • Shibusawa, Eijiro;Mitsuhashi, Wataru
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.737-741
    • /
    • 2009
  • This paper addresses the factorization method to estimate the projective structure of a scene from feature (points) correspondences over images with occlusions. We propose both a column and a row space approaches to estimate the depth parameter using the subspace constraints. The projective depth parameters are estimated by maximizing projection onto the subspace based either on the Joint Projection matrix (JPM) or on the the Joint Structure matrix (JSM). We perform the maximization over significant observation and employ Tardif's Camera Basis Constraints (CBC) method for the matrix factorization, thus the missing data problem can be overcome. The depth estimation and the matrix factorization alternate until convergence is reached. Result of Experiments on both real and synthetic image sequences has confirmed the effectiveness of our proposed method.

  • PDF