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AN ITERATIVE METHOD FOR SYMMETRIC
INDEFINITE LINEAR SYSTEMS

HoMER F. WALKER* AND SUCHEOL YIf

ABSTRACT. For solving symmetric systems of linear equations, it
is shown that a new Krylov subspace method can be obtained. The
new approach is one of the projection methods, and we call it the
projection method for convenience in this paper. The projection
method maintains the residual vector like simpler GMRES, sym-
metric QMR, SYMMLQ, and MINRES. By studying the quasi-
minimal residual method, we show that an extended projection
method and the scaled symmetric QMR method are equivalent.

1. Introduction

The GMRES method [7] is a Krylov subspace method for solving a
linear system

(1) Az =b, where A€ R™™ isnonsingular.

The GMRES method characterizes the kth iterate as x, = xo + zx for a
given initial guess xg € R™, with the correction z; chosen to minimize the
norm of the residual r(z) = b— A(zo+2) = ro — Az, where ro = b— Axy,
over the kth Krylov subspace Ki(rg, A) = span{rg, Arg, ..., A¥"1rg},
ie.,

2 rg — Azgl|l2 = min ro — Az||s.

(2) lImo kll2 eilin liro P

Most implementations of GMRES rely on the Arnoldi process, given

in Gram—Schmidt form as follows:
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ALGORITHM 1.1. Arnoldi Process

Initialize: Choose an initial vector v; with |jv1]l2 = 1.

Iterate: For k=1,2,..., do:
Set h;p = v?Avk,i =1,2,...,k.
Set ’l~1k+1 = A’l)k - Zle hi’k’Uz’.
Set hgr1k = |[Ups1ll2-
If hgt1, = 0, stop; otherwise, viy1 = Tkt1/ ks k-

The standard implementation (cf. [7]) is obtained with v; = rg/||rol|2.

Simpler GMRES implementations of Walker and Zhou [8] are ob-
tained if the Arnoldi process is applied with vy = Arg/||Arol|2. Suppose
ro # 0. Then vy = Arg/||Aroll2 is well-defined, since A is nonsingular.
Setting p11 = ||Arol2 gives the equation
(3) Arg = p1,101,
and the following equation is satisfied by the Arnoldi process:

k
(4) Av = Z pi,kv; for unique p; s with prr >0 for k > 1.
i=1

Equations (3) and (4) give the relation

(8) AUy = Vi Ry,
where Uy = (ro,v1,.-.,V%-1), Vi = (v1,...,0), and
P11 .. PLk
Ry = ‘ :
Pk

The relation (5) reduces the least-squares problem (2) directly to an up-
per triangular least-squares problem by setting rg = ¢+ VkV}cTro, where
rE = Htro and Hf is the orthogonal projection onto the orthogonal com-
plement of the space Kj (v, A), because ||rg — Azx||3 = ||ro — AUy |3 =
e+ Vi (VEro— Reyi) |13 = llrxli3+ 1 Vi ro— Reyk||3. Then the kth iterate
zi, of simpler GMRES is defined by zx = xg + Ukyg, where yx = R;lwk
and wy = VkTro. Therefore, simpler GMRES implementations given by
Walker and Zhou are obtained in that the least-squares problem (2) can
be solved without maintaining a factorization of an upper-Hessenberg
matrix as in the standard GMRES implementation.

We introduce another approach to Krylov subspace methods for solv-
ing symmetric indefinite linear systems, which is called the projection
method in this paper. The projection method is closely related to the
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simpler GMRES method in that the projection and simpler GMRES
methods use the same initial basis vector v; = Arg/||Argll2 in applying
the symmetric Lanczos and Arnoldi processes, respectively, and, in the
symmetric case, the projection method can be derived from the simpler
GMRES method by finding a search direction pg such that Ap, = v
for each k. Both simpler GMRES and the projection method maintain
orthonormal bases of the space AK}(rg, A), which permit residual min-
imization through projection of the residual onto [AKk(rg, A)]*+. With
simpler GMRES, the kth approximate solution is obtained by solving
a k x k upper triangular system. This is also done with the projection
method, but only implicitly. Because the projection method is based on
the short recurrence symmetric Lanczos process, the triangular system
is tridiagonal and, therefore, one can update the approximate solution
using a three-term short recurrence formula. In contrast to simpler GM-
RES, the usual GMRES implementation maintains an orthonormal ba-
sis of Kg(rg, A) through the Arnoldi process, and, consequently, achieves
residual minimization through the solution of an upper Hessenberg least-
squares problem. MINRES [6] can be viewed as a specialization of the
usual GMRES approach to the symmetric case, in which the short re-
currence symmetric Lanczos process is used to generate an orthonormal
basis of Ki(rg, A). The upper Hessenberg system is tridiagonal, and so
solution of the upper Hessenberg least-squares problem is done implic-
itly in MINRES by implementing a three-term short recurrence formula,
for updating the approximate solution. In the symmetric indefinite case
without preconditioning, symmetric QMR [2] is obtained using the same
approach as MINRES. However, in solving the systems of the precondi-
tioned system

(6) A'2' =¥, where A' = M7 'AM;!, o' = Mz, and b = M[?b,

symmetric QMR is implemented by solving a quasi-minimization prob-
lem. Thus the approach of the projection method is similar to that
of simpler GMRES, while standard GMRES, MINRES, and symmetric
QMR follow an alternative approach.

The projection method can be extended to solve preconditioned sys-
tems of the form (6) with a suitable inner product defined by using
a symmetric positive definite preconditioner. The MINRES and sym-
metric QMR methods can also be applied to symmetric problems with
symmetric positive definite preconditioning. It will be shown that, with
a symmetric positive definite preconditioner, the projection method is
equivalent to the scaled symmetric QMR method with suitable scaling
factors. In section 2, we give a derivation of the projection method. In
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section 3, we establish a theoretical result showing the equivalence of the
extended projection method and the scaled symmetric QMR method,
and we discuss breakdowns of the projection and extended projection
methods. Finally, we present the results of numerical experiments in
section 4.

2. Derivation of the projection method

The kth residual vector r(zx) = rg — Az in simpler GMRES is the
same as rp, = Hiro = (I—VkaT)ro = rk_1~(v;£ro)vk = rk_l—[vg(rk_l—i-
Vk_leT_lro)]vk =T — (r,{_lvk)vk, i.e., the kth residual vector rg can
be obtained by orthogonalizing r;_; against vg. Suppose we have a set
{v1,...,vx} of orthonormal basis vectors of the space Ki(v1, A) that are
generated by Arnoldi’s method starting with v; = Arg/||Aro||2 and have
a vector pg such that Apy = vy for each k. Then the kth residual vector
), in the simpler GMRES method is

(7 re = Tho1— (Ti_1Uk)Uk
= 79— Azi_1— (’f‘kT_lvk)Apk
= 70— Alzg—1 + (Tz_lvk)pk}

By the last expression in equation (7) it is natural to define the kth
iterate x; of the projection method as xx = zx—1 + (r,{_l'uk)pk. Setting
P, = (p1,...,px) and Vi, = (v1,...,v;) we want AP, = Vj by the
requirement of Ap; = v; for each 7. By the relation AUy = Vi Ry in (5),
the equation AP, = V} is equivalent to

(8) Uy = P, Rg.
The search direction p is then defined as

_f mo/p1a ifk=1
Dk = ﬁ(vk_l —_ pl,kpl —_— e — pk—l,kpk‘—l) lf k > 1.

Then we have a long recursion formula to generate py in general. If
A is symmetric, then an orthonormal basis {vi,...,vx} of the space
Ky (v1,A) can be generated by the symmetric Lanczos process. Then
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the upper-triangular matrix Ry in (5) reduces to the form

P11 pr2 p13 O e 0
0 p22 P23 P24 ' ;
0
Rp=| P33
Pr—2k
: Pk—1,k=1 Pk—1k
\ 0 e cee ce 0 Pk, k
Therefore, we have a short recursion formula for px by (8), i.e.,
1
9 m= E(”k—l ~ Pr-1kPk—1 — Ph—2kPr—2) for k>1,
where  pr_ok = vi_oAvk_1, pr—1k = VE_jAvk_1,  pek = ||Tkll2,

and Uy = Avk-1 — Pk—1,kVk—1 — Pk—2,kVk—2-
For a symmetric matrix A, the projection method is as follows:

ALGORITHM 2.1. Projection method (symmetric A)
Initialize: Choose xg and set 79 = b — Axyp.
Set z = Arg, a1 = ||z||2, and v1 = z/a;.
Compute 31 = rlv;.
Set r1 =19 — Biv1, p1 = 1o/, and set
Ty = o + Bip1-
Iterate: For k =2,3,..., do:
Set vy = Avg_3.
For i = max{k - 2,1},...,k—1, do:
Set O; = v{vi.
Update vy «— v — @;v;.
Set ap = ]]Uk“z
Update vy < vk /.
Compute G = r{_lfuk.
Set rp = rip_1 — BrpUk.
k-1
Set pr. = —al—k Vpe1 — Z &;p; | and set
i=max{k—2,1}
Tk = Tk—1 + OrPk-

REMARK. One might consider extending the projection method to
solve nonsymmetric linear systems by similarly using the nonsymmetric
Lanczos process to get a short recursion formula for the search directions.
However, we found in experiments that the projection method with the
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nonsymmetric Lanczos process is very unstable for solving nonsymmetric
linear systems. Therefore, we consider only symmetric indefinite systems
in this paper.

In the projection method, we use the Euclidean inner product and
norm, i.e., < u,v >p=ul v and ||v|j2 = (vTv)'/? to determine orthogonal
projections. However, Algorithm 2.1 still works! for any inner product
and norm as long as A is symmetric with respect to that inner product,
ie,, < Au,v >=< u, Av > for all v and v. From the above observa-
tion we may extend the projection method to apply to preconditioned
systems of the form (6) under the assumption that M = M; M, is sym-
metric positive definite. If M = Mj;M> is symmetric positive definite,
then we have

10) (M7TM)T = MTIM5' = MyTMTMT M5!
My T(MyM2)" M = M7 (M M) My !
= M;TM

il

and
(1) M TMyz = (M 2)T(Myz) = (M7 T M T Myz)T (M)
= (Myz)" M~ (Mjz) >0 for all nonzero z.

It follows from (10) and (11) that M, T M, is also symmetric positive def-
inite. Therefore, we can define an inner product by using the symmetric
positive definite matrix M, T M, . Similarly, it can be easily shown that
the converse of the above result also holds. We summarize this result in
the following lemma:

LEMMA 2.1. M, T M, is symmetric positive definite if and only if
M = MM, is. Then we have an inner product defined by < u,v >,=
uTMz_TMlv for all v and v.

Furthermore, if A is symmetric, it can be shown that A’ = M| IAM{ 1
is symmetric with respect to the inner product < -,- >,. Then the de-
sired extension of the projection method is obtained by using this in-
ner product in place of the Euclidean inner product in the projection
method, and we give the algorithm below. We call the result the ex-
tended projection method. It can be summarized as follows:

ALGORITHM 2.2. Extended projection method (symmetric A)
Initialize: Choose zg and set 79 = b — Axp,

!The v;’s are orthonormal with respect to < -,- >, the residuals are minimized in
the norm || - || over the Krylov subspace, etc.
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z= M rg,u; = Az,w; = M~ tuy, and oq = yJufw;.
Update uj < ui/aq and wy < wy/oy.
Compute ) = Tgwl.
Set r1 = rg — Biu1,p1 = 2/, and set 1 = xo + F1p1-
Iterate: For k = 2,3,..., do:

Set Uk = Awk_l.
For ¢ = max{k — 2,1},...,k -1, do:

Set a; = u{wi.

Update ug « ug — a;u;.
Set wy, = M~y and o, = \/ufwk.
Update uy «— ug/ay and wg «— w /o
Compute G = Tg_lwk and set ri = rp_1 — Brug.

k-1
Set pr. = —al—k Wg_1 — Z a;p; | and set
i=max{k—-2,1}

Ty = Tp—1 + PPk

Note that in Algorithm 2.2 only M and not M; or My appears ex-
plicitly. It follows in particular that the iterates xj are independent of
the decomposition M = Mj;Ms. In addition, note that the extended
projection method allows use of only symmetric positive definite pre-
conditioners.

3. On theoretical behavior and breakdowns

We first give a brief description of symmetric QMR, introduced by
Freund and Nachtigal [2] for solving symmetric indefinite systems of
linear equations. The nonsymmetric Lanczos process requires the mul-
tiplication of vectors with A7 as well as A. Freund and Zha (4] observed
that the nonsymmetric Lanczos process can be simplified by finding a
nonsingular matrix P such that ATP = PA and setting the initial left
Lanczos vector wy = Pui/||Pvi]le. In fact, it has been shown that the
left Lanczos vector wy can be updated by using P and v only, i.e.,
wy, = ”_Ii-)vk—ﬁﬁ for each k.

Let M € R™"™ be any symmetric nonsingular matrix. Suppose M can
be factored as M = M;Ms. Then M = MMy = MZTMT = MT, where
M; and M, need not be the transposes of each other. With P = M{ M;™*
and A" = MT'AM;, it is easily shown that (A')TP = PA’, since A
and M are symmetric. With the above observations of Freund and Zha,
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this implies that the QMR method applied to the preconditioned system
(6) can be simplified. The resulting QMR method using a symmetric
preconditioner M for symmetric indefinite systems is referred to as the
symmetric QMR method. This can be summarized as follows:

ALGORITHM 3.1. Symmetric QMR
Initialize: Set rg = b — Axg,t = Ml—l’r‘o,T = ||tll2, g0 = Mz_lt,
6o = 0, and set po = 3 qo-
Tterate: For k = 1,2, ..., do:
Compute t = Aqx_1 and op_1 = qg_lt.
If ),_1 = 0, then stop; otherwise, set

Qf—1 = %Zfi— and v = rg_1 — Qg-1t.
— pr-1 — el 1 _
Set t = M{ "rg, 0, = C = Tp_10kck,

e T e
dp = C}%O;%_ldk—l + c,%ak_lqkq, and set T = 2p_1 + dg.
If x;. has converged, then stop.
If pr_1 = 0, then stop; otherwise, set
u = Myt pp = rFug, Be = 2, and qp = uk + Fedr-1-

If we apply the nonsymmetric Lanczos process to the preconditioned
system (6) to generate a basis of the space Ky (M 'rq, A') starting with
the initial Lanczos vectors ¥ = Ml_lm/u and Wy = Pt1/||Pt1]|2, where
p= || M7 roll2 and P = MT M;!, one can readily see that the Lanc-
zos basis vectors {@1, ..., %} for the space Ky (M; ‘rg, A') generated by
using the Euclidean inner product and norm are orthogonal with re-
spect to the inmer product < -,- >,. This follows from the fact that
the Lanczos vectors satisfy w; = Pu;/||P0;l|2 for each j and the bi-
orthogonality of the vectors {01, ...,Ux} and {wy,..., Wy} generated by
the nonsymmetric Lanczos process. Set 0 = diag(ws,...,@k11), where
0 = z")iTM{ T My %; for each 4. If we choose Q}c/ 2, which is obtained by
taking the square root of @; for each 4, as a diagonal weight matrix in
the QMR method [1], then symmetric QMR chooses z;, = Viyx, where
Yk solves the following minimization problem:

. Ql/2 k1 _ ,
;gg}c I k (ueq kY)ll2

where Vj, = (D1,...,0), € is the first column of the identity matrix
Iit1, and Hy is a (k + 1) x k tridiagonal matrix that is obtained by
applying the nonsymmetric Lanczos process to the system (6). Then

k+1
1
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one can see that
19 (uet* = Bz = [Viera (uet* — Hi)]l»
= Mg — Al

Therefore, choosing y; to minimize ||Q,16/ Z(ue’fH — Hyy)|2 over RF is
equivalent to minimizing the residual norm ||M;rg — A’2/||. over Kj
(M 1rg, A"). Since the projection method applied to the linear system
(6) using the inner product < -,- >, and norm || - ||« also minimizes
the residual norm || M; 'rg — A'?'||, over Ky(M; 'rg, A’), the residuals
between the scaled symmetric QMR method with scaling determined by
the @;’s and the extended projection method must be the same for each
k. Then this proves the following theorem:

THEOREM 3.1. Suppose the preconditioned system (6) is such that
M = M1 M is symmetric positive definite. Then the extended projec-
tion method applied to this system is equivalent to the symmetric QMR
method with scaling factors &y defined as above.

In Algorithm 2.1, breakdown occurs when o = 0. If o = 0,
then Avg_; belongs to the space spanned by the vectors vi,...,vg_1.
This gives Ky(vi,A) = Kg_1(vi, A), where v; = Arg/||Aro|l2, since
Ky(v1,A) = span{vi,...,vgk—1, Avg—1}. Then spaces Ki(rg,A) and
Ky _1(ro, A) have the same dimension. Therefore, we have A71b — 24 €
Ky _1(ro, A), and it follows that ry_; = 0.

If we apply the projection method to systems of the form

(12) AM™ly=b and z=Mly,

with M symmetric positive definite, then Algorithm 2.2 produces an
orthonormal basis {u1,...,u;} of the space Ki(uy, A) with respect to
the inner product < -,- >,, where u; = Arg/||Arg|« and A = AM 1,
In addition, it is clear that Algorithm 2.2 breaks down when a =

yJuFM~1u, =0, ie,,

k-1 k—1
0=ur = Awp_1 — Z QiU = AM—l’u,k_1 — Z QiU
i=max{k—2,1} i=max{k—2,1}

Then Auy_; belongs to the space span{u,. .., us_1 }, which implies that
both spaces K (u1, A) and Ky_1(u1, A) are the same. The dimension of
the space K(ro, A) is then the same as that of the space Kj_1(rg, A).
Therefore, we have A71b — Zy € Kk_l(ro,ﬁ), where o = Mz, and

it also follows that r;_; = 0. Consequently, we do not need to worry
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about breakdown of either Algorithm 2.1 or Algorithm 2.2 before the
solution is reached, since the extended projection method applied to
general systems of the form (6) is equivalent to the extended projection
method applied to systems of the form (12).

4. Numerical experiments

We present numerical experiments that show the performance of the
Krylov subspace methods discussed in the previous sections for symmet-
ric indefinite systems. In our experiments, we also include the SYMMLQ
method [6] for solving symmetric indefinite linear systems. Basically, the
kth iterate of SYMMILQ can be obtained by orthogonalizing the residual
vector 7(2) = ro — Az against Ki(rg, A), whereas that of MINRES is
obtained by minimizing the residual vector over the space K} (rg, A) for
each k. For a symmetric positive definite preconditioner M, it can be
shown that algorithms for the SYMMLQ, MINRES, symmetric QMR,
and extended projection methods can be implemented with only one
matrix-vector multiplication with A and one preconditioner-vector solve
with M at each iteration if M{ = M, in implementing symmetric
QMR. However, in implementing a preconditioner-vector solve of the
form Mw = r, factoring the preconditioner M first, i.e., M = M;M>,
we may save floating-point operations by solving two preconditioning
solves of the form Miu = r and Myw = u instead of performing a
preconditioner-vector solve with M. At each iteration, in addition to one
matrix-vector multiplication with A and two M; and My preconditioner
solves or one preconditioner solve with M, the algorithms for the sym-
metric QMR, MINRES, SYMMLQ, and extended projection methods
use approximately 7n, 10n, 11n, and 12n multiplications and divisions,
respectively.

In our experiments, we used a discretization of

Au+cu = f inD,
v = 0 ondD,

for a test problem involving a symmetric linear system, where D =
[0,1] x [0,1], and c is a constant. The usual centered difference approxi-
mations were used in the discretization. Weset f = z(1—z)+y(1—y) and
used m = 64, where m is the number of equally spaced interior points
on each side of D, so that the resulting system has dimension 4096.
For a symmetric positive definite preconditioner we used M = —L + I,
where L is the discrete Laplacian matrix. Also, we used the vector
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(1,1,..., 1)T € R for the initial guess and used double precision on
Sun Microsystems workstations in all experiments.

We look at the issue of whether the projection method given in Sec-
tion 2 is numerically as sound as the SYMMLQ, MINRES, and symmet-
ric QMR methods. We also address numerical aspects of the MINRES,
SYMMLQ, symmetric QMR, and projection methods. In all experi-
ments, the true residual norms ||b — Azg||2 are monitored in assessing
the comparative performance. It is known that there exists a symmetric
positive definite matrix Z such that M = Z2 for a symmetric posi-
tive definite matrix M. Therefore, we may apply the MINRES and
SYMMLQ methods to the following system:

(13) Az=5b, where A=2Z'AZ7', i=2Zz, and b=Z7'b

Since the implementation of each method requires only solutions of sys-
tems involving M, without regard to any particular decomposition of M,
it can be shown that MINRES applied to the system (13) is equivalent to
the extended projection method and the scaled symmetric QMR method
with scaling factors @y, defined in Section 3 when the latter two meth-
ods are applied to the system (6) with any decomposition M = Mj Mo,
as long as M is symmetric positive definite. In all experiments of the
SYMMLQ, MINRES, scaled symmetric QMR, and extended projection
methods, we used Cholesky decomposition of the preconditioner M.
Note that in this case @y = 1 for each k, i.e., scaled symmetric QMR is
the same as symmetric QMR without scaling.

In our experiments, we used solid, dashed, dashdot, and dotted curves
to distinguish the true (directly evaluated) residual norm curves gen-
erated by the MINRES, SYMMLQ, symmetric QMR, and projection
methods, respectively. In the following Figures 1 and 2, the true residual
norm curves generated by these methods are monitored using different
values of ¢: 100 and 50.

In Figures 1 and 2, one sees that there are differences in the limits
of reduction of the true residual norms. We regard these differences
as insignificant, since they are small relative to levels of residual re-
duction that are typically satisfactory in practice. Overall, the figures
suggest that the projection method is as numerically sound as MINRES,
SYMMLQ), and symmetric QMR in these experiments.

With the value of ¢ = 100 we also considered the cpu-times that
symmetric QMR, MINRES, SYMMLQ), and Algorithm 2.2 take to reach
1079 level of residual reduction. Symmetric QMR, MINRES, SYMMLQ,
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FIGURE 1. Log;g of the true residual norms vs. the num-
ber of iterations; ¢ = 100 and m = 64.

and Algorithm 2.2 took approximately 167 + 1 seconds, although this
data is machine dependent.

5. Conclusion

In this paper, we have considered Krylov subspace methods for solv-
ing large symmetric indefinite linear systems and have introduced a new
approach for solving them, which is called the projection method in this
paper. Also, we showed the equivalence between the extended projection
method, which allows the use of a symmetric positive definite precondi-
tioner, and the scaled symmetric QMR method with scaling factors wy
defined in section 3. Our numerical experiments show that the projec-
tion method is as numerically sound as the MINRES, SYMMLQ), and
symmetric QMR methods. Furthermore, on our test problems, these
methods require roughly similar effort to achieve comparable residual
norm reduction. However, only the symmetric QMR method allows use
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FIGURE 2. Logg of the true residual norms vs. the num-
ber of iterations; ¢ = 50 and m = 64.

of arbitrary nonsingular symmetric indefinite preconditioners, which is
an advantage of this method over the other methods. In our experiments,
there are instances of some disagreement of the true residual norms of
the MINRES, extended projection, and scaled symmetric QMR meth-
ods near the limits of residual reduction; however, differences of this
magnitude seem unlikely to be significant in practice.
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