• Title/Summary/Keyword: submerged plant

Search Result 220, Processing Time 0.036 seconds

Removal Characteristics of COD and Nitrogen by Aerated Submerged Bio-film(ASBF) Reactor (ASBF 생물반응기를 이용한 COD 및 질소 제거특성)

  • Choi, Young-Ik;Jung, Byung-Gil;Son, Hee-Jong;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.997-1002
    • /
    • 2007
  • The objectives of this research are to remove dissolved organic matter and nitrogen compounds by using aerated submerged bio-film(ASBF) reactors in batch systems and improve understanding of dissolved organic matter and nitrogen compounds removal rates with dynamic relationships between heterotrophic and autotrophic bacteria in the fixed-film reactor. This research explores the possibility of enhancing the performance of shallow wastewater treatment lagoons through the addition of specially designed structures. These structures are designed to encourage the growth of a nitrifying bacterial bio-film on a submerged surface. Specially, the effects of cold temperatures on the dissolved organic matter and ammonia nitrogen performance of the ASBF pilot plant was investigated for the batch system. It is anticipated thai the ASBF would be used for a design of biological treatment for removing of dissolved organic matter and nitrogen compounds in new wastewater treatment plants as well as existing wastewater treatment plants.

Nitrogen Removal Performance at Various DO Concentrations in the Bioreactor Packed with Submerged Cilia Media and Granular Sulfur (DO농도 조절에 따른 황 충전 섬모상 반응조의 질소제거 성능 변화)

  • Moon, Jin-Young;Hwang, Yong-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.519-526
    • /
    • 2006
  • In this study, the major operating factors in SND(simultaneous nitrification and denitrification) using bioreactor packed with submerged cilia media and granular sulfur such as variation of nitrification rate, organic matter removal efficiency and denitrification efficiency in different DO concentration were mainly evaluated. Synthetic wastewater and actual sewage were used as influent wastewater. Experiment with synthetic wastewater as influent wastewater was divided into three phases with the adjustment of DO concentration. As the results, nitrification efficiency and T-N removal efficiency in the Phase 3(DO 1.0~2.0 mg/L) were 99% and 52.3%, which is significantly greater than those in other two phases. Also, loading rate and denitrification efficiency of SCPGS(Submerged Cilia media Packed with Granular Sulfur) were calculated as $0.44kg\;NO_3^--N/m^3-day$ and 50%, respectively. On the other hand, nitrification rate was decreased from 99% to 64% according to the DO concentration with the variation from 3.0~3.5 mg/L(phase1) to 0.4~0.6mg/L(phase2). Although the nitrification rate was decreased in 64% according to the variation of the DO concentration, T-N removal rate was rapidly increased to 49% by increasing of the denitrification efficiency. Experiment with actual sewage as influent wastewater was carried out to evaluate efficiency of SCPGS in real operation condition of full-scale sewage water treatment plant. At the time, T-N removal rate in this experiment and full-scale wastewater treatment plants were given by 43% and 20%, respectively. The above results indicate that SCPGS can be used as an advanced treatment process for economical efficiency considered.

Development of a Submerged Propeller Turbine for Micro Hydro Power

  • Kim, Byung-Kon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.45-56
    • /
    • 2015
  • This paper aims to develop a submerged propeller turbine for micro hydropower plant which allows to sustain high values of efficiency in a broad range of hydrological conditions (H=2~6 m, $Q=0.15{\sim}0.39m^3/s$). The two aspects to be considered in this development are mechanical simplicity and high-efficiency operation. Unlike conventional turbines that have spiral casing and gear box, this is directing driving and no spiral casing. A 10 kW class turbine which has the most high potential of the power generation has been developed. The most important element in the design of turbine is the runner blade. The initial blade is designed using inverse design method and then the runner geometry is modified by classical hydraulic method. The design process is carried out in two steps. First, the blade shape is fix and then other components of submerged propeller turbine are designed. Computational fluid dynamics analyses based on the Navier-Stokes equations have been used to obtain overall performance data for the blade and the full turbine, respectively. The results generated by performance parameters(head, guide vane opening angle and rotational speed) variations are theoretically analysed. The evaluation criteria for the blade and the turbine performances are the pressure distribution and flow's behavior on the runner blades and turbine. The results of simulation reveals an efficiency of 91.5% and power generation of 10.5kW at the best efficiency point at the head of 4m and a discharge of $0.3m^3/s$.

Verification of Calculated Hydrodynamic Forces Acting on Submerged Floating Railway In Waves (파랑 중 해중철도에 작용하는 유체력 계산 및 검증)

  • Seo, Sung-Il;Mun, Hyung-Seok;Lee, Jin-Ho;Kim, Jin-Ha
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.6
    • /
    • pp.397-401
    • /
    • 2014
  • In order to rationally design a new conceptual submerged floating railway, prediction of wave forces applied to the structure is very important. In this paper, equations to calculate such forces based on hydrodynamic theories were proposed and model tests were carried out. Inertia forces and drag forces, calculated using Morison's equation and the linear small amplitude wave theory, were in good agreement with the results from model tests conducted in a wave making tank. Drag forces were negligible compared with inertia forces. Also, wave forces showed linear variation with the changing wave heights. It was revealed that the linear wave theory and Morison's equation can give a simple and useful solution for the prediction of wave forces in the initial design stage of a submerged floating railway.

3D Numerical Simulation of Water Surface Variations and Velocity Fields around Permeable Submerged Breakwaters under Irregular Waves (불규칙파 조건 하에서 투과성잠제 주변의 수면변동 및 유속장에 관한 3차원 수치모의)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.4
    • /
    • pp.153-165
    • /
    • 2018
  • In this study, the performance of irregular wave field generation of olaFlow is first verified by comparing the frequency spectrum of the generated waves by the wave-source using olaFlow and the target wave. Based on the wave performance of irregular waves of olaFlow, the characteristics of the velocity field including the average flow velocity, longshore current and turbulent kinetic energy around the three-dimensional permeable submerged breakwaters, which act as the main external forces of the salient formation, are numerically investigated. The numerical results show that as the gap width between breakwaters decreases, the wave height in the center of the gap increases and as the gap width between breakwaters increases, the longshore currents become stronger. As a result, it is possible to understand the formation of the salient formed behind the submerged breakwaters.

Ontogeny of Stomata and Aerenchyma Tissue in Trapa natans L. var. bispinosa Makino (마름(Trapa natans L. var. bispinosa Makino)의 기공 및 통기조직의 형태발생)

  • 성민웅
    • Journal of Plant Biology
    • /
    • v.26 no.1
    • /
    • pp.41-51
    • /
    • 1983
  • This study was carried out to investigate ontogeny of stomata and aerenchyma tissue in Trapa natans L. var. bispinosa Makino, an aquatic plant. Ontogeny of stomata in this plant was an aperigenous type surrounding with 5 to 8 epidermal cells without subsidiary cells. Stomata were distributed abundantly on the upper surface of leaf, however, no stoma was found on the lower surface of leaf, and on the epidermis of reproductive organ, petiole and stem. Ontogency of aerenchyma tissue was progressed with five steps; 1) formation of angular cells by division of cortex cells, 2) development of small and large globular cells in accompany with schizogenous intercellular space, 3) enlargement of globular cells and more expansion of intercellular space, 4) cell induction of long elliptic and triarmed shape, 5) completion of the largest intercellular space from endodermis toepidermis. During the growth period two types of leaf were appeared at each node of stems; one type was a submerged and early-fallen leaf, the other was a floating leaf on water surface.

  • PDF

Distribution of specific plants and Hydrophytes in the wetland of Youngsan River (영산강집수역의 수생식물과 특정식물분포)

  • 김하송;임병선;이점숙
    • Korean Journal of Plant Resources
    • /
    • v.12 no.4
    • /
    • pp.303-311
    • /
    • 1999
  • This study had been performed to clarify the distribution of specific plants and hydrophytes in the 27 sites of drainage basins located in Youngsan River at the period of June 1997 to July 1999. Hydrophytes were composed of 32 familis 86 species and hygrophytes 36 familis 135 species. Among hydrophytes, emerged plant, floating-leaved plant, submerged plants and free floating hydrophytes were 52, 15, 12, and 7 species respectively in this investigation. Threatened species were Drosera rotundifolia, Utricularia racemosa, Utricularia bifida, Utricularia japonica, Hydrocharis dubia, Endangered species were Brasenia schreberi and Euryale ferox.

  • PDF

Characteristics of Velocity Fields around 3-Dimensional Permeable Submerged Breakwaters under the Conditions of Salient Formation (설상사주 형성조건 하에 있는 3차원투과성잠제 주변에서 내부유속변동의 특성)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.399-409
    • /
    • 2017
  • This study numerically investigates the characteristics of the velocity field including the average flow velocity, longshore current and turbulent kinetic energy acting as the main external forces of the salient formed behind the permeable submerged breakwaters. Shoreline response is also predicted by the longshore-induced flux. In this paper, a three-dimensional numerical wave tank based on the OLAFOAM, CFD open source code, is utilized to simulate the velocity field around permeable submerged breakwaters under the formation condition of salient. The characteristics of the velocity field around permeable submerged breakwaters with respect to the gap width between breakwaters and the installing position away from the shoreline under a range of regular waves for different wave height are evaluated. The numerical results revealed that as the gap width between breakwaters increases, the longshore currents become stronger. Furthermore, as the gap width becomes narrower, the point where flow converges moves from the center of the breakwater to the head part. As a result, it is possible to understand the formation of the salient formed behind the submerged breakwaters. In addition, it was found that the longshore currents caused by the gap width between breakwaters and the installation position away from the shoreline are closely related to the turbulent kinetic energy.

Effects of Rice Straw on the Microflora in Submerged Soil -I. Effects of Rice Straw on the Microflor in Relation to Nitrogen Metabolism in Submerged Soil (볏짚 시용(施用)이 논토양(土壤)의 미생물상(微生物相)에 미치는 영향(影響) -I. 질소대사(窒素代謝)에 관여(關與)하는 미생물(微生物)과 토양성분(土壤成分))

  • Kim, Yong-Woong;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.82-89
    • /
    • 1984
  • These studies were carried out to investigate the effects of rice straw on microflora in relation to nitrogen metabolism in submerged soil. Rice plants were cultured in submerged soil to which rice straw was applied. In the submerged soil applied with rice straw the value of Eh lowered. pH was higher in the upper layer than in the lower. The content of iron(II) in submerged soil increased, while that of ammonium nitrogen decreased when rice straw was applied and nitrate-nitrogen was hardly detected during the rice cultivation period Under application of rice straw the number of denitrifying bacteria observed to increase at the early growing stage of rice plant and to decrease thereafter, and that of nitrate reducing bacteria increased at the late growing stage. The number of ammonium oxidizing bacteria and that of nitrite oxidizing bacteria decreased continually but the latter were rather sharply decreased.

  • PDF

High-Rate Nitrogen Removal using a Submerged Module of Sulfur-Utilizing Denitrification (침지형 황 탈질 모듈을 이용한 고속의 질소제거)

  • Moon, Jin-Young;Hwang, Yong-Woo;Ga, Mi-Sun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.429-437
    • /
    • 2007
  • This study aims to develop a sulfur-using denitrification process which is possible a renovation to advanced treatment plant submerging a simple module in activated sludge aeration tank. At first, the impact factor of sulfur-using denitrification was appreciated by the batch test. Secondly, reflecting a dissolved oxygen effect of sulfur-using denitrification that was confirmed by the batch test, in a continuous nitrification/sulfur-using denitrification, high-rate nitrogen removal reaction was induced at optimum condition controlling DO concentration according to phases. Also, inside and outside of sulfur-using denitrification module was covered with microfilter and the module was considered as an alternative of clarifier. Result of batch test for sulfur-using denitrification, $NO_2{^-}N$ was lower for consumption of alkalinity and sulfur than that of $NO_3{^-}-N$. These results revealed the accordance of theoretical prediction. In continuous nitrification/sulfur-using denitrification experiment, actual wastewater was used as a influent, and influent nitrogen loading rates were increased 0.04, 0.07, 0.11, $0.14kg\;N/m^3-day$ by changing hydraulic retention times. At this time, nitrogen loading rates of packed sulfur were increased 0.23, 0.46, 0.69, $0.93kg\;N/m^3-day$. As a result, nitrification efficiency was about 100% and denitrification efficiency was 93, 81, 79, 72%. Accordingly, nitrogen removal was a high-rate. Also the module of sulfur-using denitrification covered with microfilter did not make a fouling phenomena according to increased flux. And the module was achieved effluent suspended solids of below 10 mg/L without a clarifier. In conclusion, it is possible a renovation to advanced treatment plant submerging a simple module packed sulfur in activated sludge aeration tank of traditional facilities. And the plant used the module packed sulfur is expected as a effective facilities of high-rate and the smallest.