• 제목/요약/키워드: submerged membrane bioreactor

검색결과 54건 처리시간 0.03초

황 충진 MBR을 이용한 도금폐수의 고효율 생물학적 질소 제거 (High-Rate Biological Nitrogen Removal from Plating Wastewater using Submerged MBR Packed with Granular Sulfur)

  • 김대영;문진영;백진욱;황용우
    • 상하수도학회지
    • /
    • 제19권2호
    • /
    • pp.200-208
    • /
    • 2005
  • In this study, a new submerged membrane bioreactor process packed with granular sulfur (MBR-GS) was operated to identify the biological nitrogen removal behaviors with plating wastewater containing high-strength $NO_3{^-}$ concentration. The continuous denitrification was carried out at $20^{\circ}C$ with various nitrogen loading rates using synthetic wastewater, which composed of $NO_3{^-}$ and $HCO_3{^-}$, but also actual plating wastewater, which was collected from the effluent of the H metal plating company. As a result, high-rate denitrification in the range of $0.8kg\;NO_3{^-}-N/m^3\;day$ was accomplished at nitrogen loading rate of $0.9kg\;NO_3{^-}-N/m^3\;day$ using synthetic wastewater. Also, higher-rate denitrification with actual plating wastewater was achieved up to $0.91kg\;NO_3{^-}-N/m^3\;day$ at the loading rate of $1.11kg\;NO_3{^-}-N/m^3\;day$. Additionally, continuous filtration was possible during up to 30 days without chemical cleaning in the range of 20 cmHg of transmembrane pressure. On the basis of the proposed stoichiometry, ${SO_4}^{2-}$ production could be estimated efficiently, while observed alkalinity consumption was somewhat lower than theoretical value. Consequently, a new process, MBR-GS is capable of high-rate autotrophic denitrification by compulsive flux and expected to be utilized as an alternative of renovation techniques for nitrogen removal from not only plating wastewater but also municipal wastewater with low C/N ratio.

하수의 고도처리를 위한 저비용 저에너지의 대체 막을 조합한 생물반응기의 개발 (Advanced Wastewater Treatment using Bioreactor Combined with Alternative Membrane)

  • 김동하
    • 상하수도학회지
    • /
    • 제19권1호
    • /
    • pp.25-30
    • /
    • 2005
  • In order to decrease the high costs of membrane process, we have tried to develop two alternatives to membrane; a cartridge type filter and a metal membrane were tested for the high permeation flux with low cost and low energy. This research mainly focused on three points; 1) operation with high permeation flux by using of a cartridge type filter and a metal membrane, 2) removals of the filterable organic materials (FOC) by pretreatments for the membrane fouling control, and 3) advanced wastewater treatment by SMBR process with intermittent aeration and high MLSS. An Intermittently aerated membrane bioreactor using a submerged micro filter (cartridge type) was applied in laboratory scale for the advanced wastewater treatment. To minimize membrane fouling, intermittent aeration was applied inside of the filter with $3.0kg_f/cm^2$. The experiments was conducted for 6 months with three different HRTs (8, 10, 12 hr) and high MLSS of 6,000 and 10,000mg/L. The filtration process could be operated up to 50 days with permeation flux of 500LMH. Regardless of the operating conditions, more than 95% of COD, BOD and SS were removed. Fast and complete nitrification was accomplished, and denitrification was appeared to be the rate-limiting step. More than 75% T-N could be removed due to the endogenous denitrification. T-P removal efficiency was increased to 80% under the condition of MLSS 10,000mg/L.

생물막 반응기내 quorum quenching을 이용한 운전방식에 따른 흡입 압력의 영향 (Effect of Suction Pressures with Respect to the Operational Modes Using the Quorum Quenching in the Membrane Bioreactor)

  • 김민형;구응모;김혁;오현석;정건용
    • 멤브레인
    • /
    • 제32권6호
    • /
    • pp.465-474
    • /
    • 2022
  • 역세척이 가능한 평막형 분리막 모듈을 분리막 생물반응기(MBR)에 침지시켜 운전 시간에 따른 흡입 압력을 측정하였다. MLSS 8,000 mg/L 활성 슬러지 수용액에 공칭 세공크기가 0.2 ㎛, 유효막면적이 128 cm2 인 분리막 모듈을 침지시킨 후 투과 유속, quorum qeunching (QQ) 비드를 변화하며 흡입 압력을 확인하였다. Vacant bead (VB), BH4와 DKY-1의 실험군에서 FR과 SFCO 운전방식에 따른 효과를 비교, 분석하였다. 투과 유속 40 L/m2 ⋅h 이고 DKY-1 QQ 비드를 주입할 경우 흡입 압력 감소는 가장 효과적이었다. 또한 역세척에 의한 흡입 압력 감소 효과는 DKY-1 QQ 비드의 경우보다 2배 이상 높게 나타났다.

활성슬러지 케이크의 분리막 오염 모델 (Membrane Fouling Models for Activated Sludge Cakes)

  • 김대천;정건용
    • 멤브레인
    • /
    • 제24권3호
    • /
    • pp.249-257
    • /
    • 2014
  • 본 실험은 실험실적 규모의 침지식 평막형 분리막이 장착된 활성슬러지 생물반응기에 인공폐수를 사용하여 수행하였다. 분리막 운전은 MLSS 5,000 mg/L 활성슬러지 용액을 일정 유량으로 계속 투과시키는 방식과 주기적으로 10분여과/2분휴지 방식으로 구분하여 실시하였다. 산기량은 0.25 L/min로 일정하게 유지한 상태에서 투과유속을 10에서 $25L/m^2{\cdot}hr$까지 증가시키면서 막간차압을 측정하였다. 또한 분리막 오염 상태를 판단하기 위하여 완전막힘, 표준막힘, 중간막힘, 비압축성 케이크 및 선형압축성 케이크 오염 모델을 실험값에 적용하였다. 10분운전/2분휴지 운전방식에서는 매 주기마다 펄스형태로 막간차압이 변화하므로 최고점 및 최저점 연결선으로 구분하여 막오염 모델을 적용하였다. 활성슬러지 케이크 막오염은 이상의 5가지 오염 모델 중 선형압축성 케이크 오염 모델이 모든 투과실험 결과와 가장 잘 일치하였다.

Impact of quorum quenching bacteria on biofouling retardation in submerged membrane bioreactor (SMBR)

  • Pervez, Saimar;Khan, Sher Jamal;Waheed, Hira;Hashmi, Imran;Lee, Chung-Hak
    • Membrane and Water Treatment
    • /
    • 제9권4호
    • /
    • pp.279-284
    • /
    • 2018
  • Membrane biofouling is a critical operational problem that hinders the rapid commercialization of MBRs. Quorum quenching (QQ) has been investigated widely to control membrane biofouling and is accepted as a promising anti-fouling strategy. Various QQ strategies based on bacterial and enzymatic agents have been identified and applied successfully. Whereas, this study aimed to compare indigenously isolated QQ strain i.e., Enterobacter cloaca with well reported Rhodococcus sp. BH4. Both bacterial species were immobilized in polymeric beads and introduced to two different MBRs keeping the overall beads to volume ratio as 1%. Efficiencies of these strains were monitored in terms of prolonging the membrane filtration cycle of MBR, release of extra-cellular polymeric substances, membrane resistivity measurements and mineralization of signal molecules and permeate quality. Indigenous strain (Enterobacter cloaca) was added to $QQ-MBR_E$ while Rhodococcus sp. BH4 was introduced to $QQ-MBR_R$. QQ bacterial embedded beads showed enhanced filtration cycles up to 1.4 and 2.3 times for $QQ-MBR_E$ and $QQ-MBR_R$ respectively as compared to control MBR (C-MBR). Soluble EPS concentration of 52 mg/L was observed in C-MBR while significantly lower EPS concentration of 20 and 10 mg/L was witnessed in $QQ-MBR_E$ and $QQ-MBR_R$, respectively. Therefore, substantial reduction in biofouling showed the effectiveness of indigenous strain.

Effect of solids retention time on membrane fouling in membrane bioreactors at a constant mixed liquor suspended solids concentration

  • Hao, L.;Liss, S.N.;Liao, B.Q.
    • Membrane and Water Treatment
    • /
    • 제8권4호
    • /
    • pp.337-353
    • /
    • 2017
  • Membrane fouling at different solids retention times (SRT) (7, 12 and 20 days) was studied under well-controlled conditions in a laboratory-scale aerobic submerged membrane bioreactor under constant biomass concentration using a synthetic high strength wastewater. An increase in SRT was found to improve membrane performance and this correlated to changes in the total production of bound extracellular polymeric substances (EPS), and the composition and properties of bound EPS using X-ray photoelectron spectroscopy (XPS) and Fourier transform-infrared spectroscopy (FTIR) and floc sizes. A larger amount of total bound EPS was found at the lowest SRT (7 days) tested but the ratio of proteins (PN) to carbohydrates (CH) in bound EPS increased with an increase in SRT. Similarly, the quantity of soluble microbial products (SMP) decreased with an increase in SRT and the SMP PN/CH ratio increased with an increase in SRT. SMP concentrations positively correlated to the percentage of membrane pore blocking resistance. The quantity of total bound EPS and total SMP positively corresponded to the membrane fouling rate, while the PN/CH ratio in the bound EPS and SMP negatively correlated to the membrane fouling rate. The results show that both the quantity and composition of bound EPS and SMP and floc sizes are important in controlling membrane fouling.

Investigation of influence of nano H-ZSM-5 and NH4-ZSM-5 zeolites on membrane fouling in semi batch MBR

  • Sajadian, Zahra Sadat;Hazrati, Hossein;Rostamizadeh, Mohammad
    • Advances in nano research
    • /
    • 제8권2호
    • /
    • pp.183-190
    • /
    • 2020
  • The objectives of this research were the reduction of membrane fouling and improvement of sludge properties by using synthesized H-ZSM-5 and NH4-ZSM-5 zeolites. These two nano zeolites were synthesized and added to the membrane bioreactor (MBR). Three similar MBRs with the same operational condition were used in order to evaluate their effect on the mentioned matters. The evaluated parameters were trans-membrane pressure (TMP), Fourier-transform infrared spectroscopy (FTIR), particle size distribution (PSD), soluble microbial product (SMP), extracellular polymeric substances (EPS) and, excitation-emission matrix (EEM). The MBR0 was without any additional zeolite while 0.4 g/L of H-ZSM-5 and NH4-ZSM-5 were added to MBRHZSM-5 and MBRNH4ZSM-5, respectively. The COD removal of the MBR0, MBRH-ZSM-5 and MBRNH4-ZSM-5 were 87.5%, 93.3% and 94.6%, respectively. The TMP of the MBRH-ZSM-5 was 45% less than MBR0 whereas the reduction for MBRNH4-ZSM-5 was 65.5%. Also results showed that both H-ZSM-5 and NH4-ZSM-5 caused reduction in protein and polysaccharide related EPS but the NH4-ZSM-5 had better performance toward the elimination of organic compounds.

High xylitol production rate of osmophilic yeast Candida tropicalis by long-term cell-recycle fermentation in a submerged membrane bioreactor

  • Kwon, Seun-Gyu;Park, Seung-Won;Oh, Deok-Kun
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.272-276
    • /
    • 2005
  • Candida tropicalis, an osmophilic strain isolated from honeycomb, produced xylitol at a maximal volumetric production rate of 3.5 g $l^{-1}$ $h^{-1}$ from an initial xylose concentration of 200 g $l^{-1}$. Even with a very high xylose concentration, e.g., 350 g $l^{-1}$, this strain produced xylitol at a moderate rate of 2.07 g $l^{-1}$ $h^{-1}$. In a fed-batch fermentation of xylose and glucose, 260 g $l^{-1}$ of xylose was added, and xylitol production was 234 g $l^{-1}$ for 48 h, corresponding to a rate of 4.88 g $l^{-1}$ $h^{-1}$. To increase the xylitol production rate, cells were recycled in a submerged membrane bioreactor with suction pressure and air sparging. In cell-recycle fermentation, the average concentration of xylitol produced per recycle round, total fermentation time, volumetric production rate, and product yield for ten rounds were 180 g $l^{-1}$, 195 h, 8.5 g $l^{-1}$ $h^{-1}$, and 85%, respectively. When cell-recycle fermentation was started with the cell mass contratrated two-fold after batch fermentation and was performed for ten recycle rounds, we achieved a very high production rate of 12 g $l^{-1}$ $h^{-1}$. The production rate and total amount of xylitol produced in cell-recycle fermentation were 3.4 and 11 times higher than in batch fermentation, respectively.

  • PDF

폐수의 고도처리를 위한 무산소/호기형 분리막생물반응조 - 역삼투 공정과 활성슬러지공정 - 정밀여과 - 역삼투 공정의 비교 (Comparison of Anoxic/Oxic Membrane Bioreactor - Reverse Osmosis and Activated Sludge Process-Microfiltration-Reverse Osmosis Process for Advanced Treatment of Wastewater)

  • 노성희;김선일;전홍화;송연호
    • 공업화학
    • /
    • 제17권5호
    • /
    • pp.521-526
    • /
    • 2006
  • 폐수를 재이용하기 위한 고도처리 시스템으로서 분리막 생물반응조(Membrane Bioreactor, MBR)는 기존의 활성슬러지 공정(Activated Sludge Process, ASP)에 비하여 많은 장점을 가지고 있다. 도시 하수 중에 포함된 유기물과 영양염류를 동시에 제거하기 위하여 침지형 정밀여과(Microfiltration, MF) 막을 이용한 무산소/호기(Anoxic/Oxic, A/O)형 MBR에서 투과플럭스를 $10.2L/m^2{\cdot}h$로 일정하게 유지하면서 고형물 체류시간(Solids Retention Time, SRT) 변화에 따른 막 여과 특성을 조사하였다. 실험 결과, SRT를 증가시킬수록 체외고분자물질(Extracellular Polymeric Substances, EPS)내 단백질/탄수화물(Protein/Carbohydrate, P/C) 비가 높아져서 막 오염이 빠르게 진행되었다. A/O MBR에 RO막을 결합한 A/O MBR-RO 공정을 폐수의 고도처리에 적용하고자 하였으며, 성능평가를 위해 A/O MBR-RO 공정과 기존의 활성슬러지 공정에 MF와 RO막을 결합한 ASP-MF-RO 공정의 유기물 및 영양염류 제거율을 비교하였다. 실험 결과 A/O MBR-RO 공정이 ASP-MF-RO 공정보다 더 우수한 처리효율을 나타내었다.

원통 침지형 평막 생물반응기 내 산기량에 따른 3차원 유동현상에 관한 수치모사 (Numerical Simulation of Three Dimensional Fluid Flow Phenomena in Cylindrical Submerged Flat Membrane Bioreactor for Aeration Rate)

  • 김대천;정건용
    • 공업화학
    • /
    • 제25권4호
    • /
    • pp.401-408
    • /
    • 2014
  • 분리막 생물반응기에서 산기량 제어는 반응기 내 유체흐름과 특히 막표면 근방에서의 전단응력을 변화시켜 막오염 감소 및 에너지 절약을 구현하는 중요 독립변수 중 하나이다. 본 연구에서는 원통형 생물 반응기 중심에 침지형 평막을 장착하고 하부에서 공기가 공급되는 3차원적 시스템에 대하여 "COMSOL"프로그램을 사용하여 수치해석하였다. 용액의 점도, 온도는 일정하다고 가정했으며 투과액 부피와 산기량의 비인 $SAD_p$를 변수로 사용하였다. 유속센서, 동영상 이미지분석으로 측정한 유속과 수치해석 결과는 11% 이내에서 일치함을 확인하였다. 반응기 내 유체의 흐름은 산기관과 막모듈 구간에서 급격하게 증가하였으나 막모듈을 지나면서 감소하였으며 반응조 벽에서 중심축 방향으로 갈수록 유속이 증가하는 경향을 보였다. 막 표면에서 계산된 전단응력은 하단 중앙부가 가장 크게 나타났으며 산기량이 증가할수록 전단응력이 증가하였다. 특히 산기량을 0.15에서 0.25 L/min로 증가할 경우 크게 증가함을 확인할 수 있었다.