High-Rate Biological Nitrogen Removal from Plating Wastewater using Submerged MBR Packed with Granular Sulfur

황 충진 MBR을 이용한 도금폐수의 고효율 생물학적 질소 제거

  • 김대영 (인하대학교 환경토목공학부) ;
  • 문진영 (인하대학교 환경토목공학부) ;
  • 백진욱 (인하대학교 환경토목공학부) ;
  • 황용우 (인하대학교 환경토목공학부)
  • Received : 2005.01.10
  • Accepted : 2005.03.24
  • Published : 2005.04.15

Abstract

In this study, a new submerged membrane bioreactor process packed with granular sulfur (MBR-GS) was operated to identify the biological nitrogen removal behaviors with plating wastewater containing high-strength $NO_3{^-}$ concentration. The continuous denitrification was carried out at $20^{\circ}C$ with various nitrogen loading rates using synthetic wastewater, which composed of $NO_3{^-}$ and $HCO_3{^-}$, but also actual plating wastewater, which was collected from the effluent of the H metal plating company. As a result, high-rate denitrification in the range of $0.8kg\;NO_3{^-}-N/m^3\;day$ was accomplished at nitrogen loading rate of $0.9kg\;NO_3{^-}-N/m^3\;day$ using synthetic wastewater. Also, higher-rate denitrification with actual plating wastewater was achieved up to $0.91kg\;NO_3{^-}-N/m^3\;day$ at the loading rate of $1.11kg\;NO_3{^-}-N/m^3\;day$. Additionally, continuous filtration was possible during up to 30 days without chemical cleaning in the range of 20 cmHg of transmembrane pressure. On the basis of the proposed stoichiometry, ${SO_4}^{2-}$ production could be estimated efficiently, while observed alkalinity consumption was somewhat lower than theoretical value. Consequently, a new process, MBR-GS is capable of high-rate autotrophic denitrification by compulsive flux and expected to be utilized as an alternative of renovation techniques for nitrogen removal from not only plating wastewater but also municipal wastewater with low C/N ratio.

Keywords

Acknowledgement

Supported by : 서해연안환경연구센터

References

  1. 류희정, 신항식, 선진환, 신형우, 이원호, 강성환 (1999) 기초 상하수도. p.404. 신광문화사
  2. 변정섭, 범봉수, 조광명 (2000) 황을 이용한 독립영양탈절에서의 체류시간과 온도의 영향, 대한환경공학화지, 22(3), pp.405-415
  3. 이동욱, 박재홍, 배재호 (2000) 황 이용 독립영양 탈질시 알칼리도 저감을위한 종속영양 탈질의 이용방안, 대한환경공학회지. 22(11), pp. 1995-2005
  4. 이수원, 김규동, 최영균, 김동한, 정태학 (2004) 미생물 성장 특성에 기초한 독립영양탈질의 화학양론식 연구, 상하수도학회지, 18(2). pp.121-127
  5. 이진우, 이한웅, 이수연, 권수열, 최의소, 박용곤(2003) 독립영양 탈질특성을 고려한 질소제거와 미생물의 분포 특성비교, 대한환경공학화지. 25 (11), pp. 1352-1358
  6. 추인준, 황용우, 김장균, 이시진 (2002) 황 충전 섬모상 담체를 이용한 질산화 탈질 동시수행, 대한환경공학회지, 24(2), pp.185-94
  7. 한만석, 탁용석, 이충영, 남종우 (1998) 전해공정에 의한 도금폐수내의 시안분해, 대한환경공학화지, 20(6), pp 875-884
  8. 환경부(2004) 수질환경오염공정시험법, 환경부고시 제 200-188호
  9. 환경부, 환경관리공단(2004) 하수처리장 운전개선방식 우수 사례집, 11-1480000-000736-01. pp.29-35
  10. APHA, AWWA, and WEF (1998) Standard Methods for the Examination of Water and Wastewater, 20th edition, Washington DC, USA
  11. Batchelor, B. and Lawrence, A.W. (1978) A Kinetic Model or Autotrophic Denitrification using Elemental Sulfur, Water Res., 12, pp. 1075-1084 https://doi.org/10.1016/0043-1354(78)90053-2
  12. Batchelor, B. and Lawrence. A.W. (1989) Autotroplic Denitrification using Elemental Sulfur, JWPCF, 50(8), pp. 1986-2001
  13. Claus, G. and Kutzner, H. J. (1985) Physiology and Kinetics of Autotrophic Denitrification by Thiobacillus Denitrificans, Appl. Microbiol, Biotechnol., 22, pp. 283-288
  14. Kim, D. Y. (2003) High-Rate Anaerobic Digestion of ParticuJate Organics and Mathematical Modeling, pp. 95-129, PhD Thesis, Seoul National University
  15. Kleerebezem, R. and Mendez, R. (2002) Autotropbic Denitrification for Combined Hydrogen Sulfide Remo'al from Biogas and Post-Denitrification, Water Sci. Tech., 45(10), pp. 349-356
  16. Koenig, A. and Liu, L. H. (1996) Autotrophic Denitrification of Landfill Leachate using Elemental Sulfur, Water Sci. Tech., 34(5-6), pp. 469-476
  17. Koenig, A and Liu, L. H. (1997) Autotrophic Denitrification of Nitrified Landfill Leachate by Thiobacillus Denitrificam, Proceedings of the 8th International Conference of Anacronic Digestirm, Sendai Japan, pp. 299-306
  18. Koenig, A. and Liu, L. H. (2001) Kinetic Model of Autotropbic Denitrification in Sulfur Packed-Bed Reactor,' Water Res., 35(8), pp, 1969-1978
  19. Lampe, D. G. and Zhang, T. C. (1999) Sulfur Limestone Autotrophic Denitrification Processes for Treatment of Nitrate-Contaminated Water: Batch Experiments, Water Res., 33(3), pp. 599-608 https://doi.org/10.1016/S0043-1354(98)00281-4
  20. Oh, S. E., Bum, M. S., Yoo, Y. B., Zubair, A. and Kim, I. S. (2002) Nitrate Removal by Simultaneous Sulfur utilizing Autotrophic and Heterotrophic Denitrification under Different Organics and Alkalinity Conditions: Batch Experiments, Water Sci. Tech., 47(1), pp. 237-244
  21. Rittmann, B. E. and McCarty, P. L. (2001) Environmental Biotechnology: Principles and Applications, p. 129, McGraw-Hill, International Editions
  22. Stumn, W. and Morgan, J.J. (1996) Aquatic Chemistry 3rd edition, pp. 138-140, John Wiley & Sons, USA