• Title/Summary/Keyword: subgrade modulus

Search Result 141, Processing Time 0.031 seconds

Effect of Engineering Properties on Resilient Modulus of Cohesive Soil as Subgrade (세립토의 회복탄성계수(Mr)에 대한 지반물성치의 영향)

  • Kim, Dong-Gyou;Lee, Ju-Hyung;Hwang, Young-Cheol;Chang, Buhm-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.67-74
    • /
    • 2013
  • The objective of this study was to identify the effect of engineering properties on the resilient modulus ($M_r$) of cohesive soils as subgrade. Eight representative cohesive soils representing A-6, and A-7-6 soil types collected from road construction sites, were tested in the laboratory to determine their basic engineering properties. The laboratory tests for the engineering properties were Atterberg limits test, sieve analysis, hydrometer test, Standard Proctor compaction test, and unconfined compressive strength test. Resilient modulus test and unconfined compressive strength test were conducted on unsaturated cohesive soils at three different moisture contents (dry of optimum moisture content, optimum moisture content, and wet of optimum moisture content). The increase in moisture content considerably affected the decrease in the resilient modulus. The resilient modulus increased with an increase in maximum unconfined compressive strength, percent of clay, percent of silt and clay, liquid limit and plasticity index. The resilient modulus decreased with an increase in percent of sand.

Development and Performance Evaluation of In-situ Dynamic Stiffness Analyzer (원위치 동적강성 분석기의 개발 및 성능평가)

  • Kim, Dong-Ju;Byun, Yong-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.41-50
    • /
    • 2019
  • Stiffness characteristic of subgrade is one of the most important aspects for the design and evaluation of pavement and railway. However, adequate field testing methods for evaluating the stiffness characteristics of the subgrade have not been developed yet. In this study, an in-situ dynamic stiffness analyzer (IDSA) is developed to evaluate the characteristics of subgrade stiffness along the depth, and its performance is evaluated in elastic materials and a compacted soil. The IDSA consists of a falling hammer system, a connecting rod, and a tip module. Four strain gauges and an accelerometer are installed at the tip of the rod to analyze the dynamic response of the tip generated by the drop of hammer. Based on the Boussinesq's method, the stiffness and Young's modulus of the specimens can be calculated. The performance of IDSA was tested on three elastic materials with different hardness and a compacted soil. For the repeatability of test performance, the dynamic signals for force and displacement of the tip are averaged from the hammer impact tests performed five times at the same drop height. The experimental results show that the peak force, peak displacement, and the duration depend on the hardness of the elastic materials. After calculating the stiffness and elastic modulus, it is revealed that as the drop height of hammer increases, the stiffness and elastic moduli of MC nylon and the compacted soil rapidly increase, while those of urethanes less increase.

Stiffness Characterization of Subgrade using Crosshole-Type Dynamic Cone Penetrometer (크로스홀 형태의 동적 콘 관입기를 이용한 노반의 강성특성 평가)

  • Hong, Won-Taek;Choi, Chan Yong;Lim, Yujin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.55-63
    • /
    • 2018
  • In order to support the load of the train with enough stiffness, a study on an effective method for the characterization of the stiffness of the compacted subgrade is required. In this study, the crosshole-type dynamic cone penetrometer (CDCP) is used for the stiffness characterization of the subgrade along the depth. For the application of the CDCP test, three points of compacted subgrades are selected as the study sites. For the study sites, CDCP test, in-situ density test, and light falling weight deflectometer (LFWD) test are conducted. As the results of CDCP tests, shear wave velocity profiles are obtained by using the travel times and the travel distances of the shear waves along the depth. In addition, maximum shear modulus ($G_{max}$) profiles are estimated by using the density of the subgrades and the shear wave velocity profiles. The averaged maximum shear moduli at each testing point are highly correlated with the dynamic deflection moduli ($E_{vd}$) determined by LFWD tests. Therefore, a reliable stiffness characterization of the subgrade can be conducted by using CDCP tests. In addition, because CDCP characterizes the stiffness of the subgrade along the depth rather than a representative value, CDCP test may be effectively used for the stiffness characterization of the subgrade.

The Resilient Characteristics of Typical Subgrade Soils in Korea (우리나라 대표적 노상토의 회복탄성 특성)

  • 조천환;우제윤
    • Geotechnical Engineering
    • /
    • v.7 no.1
    • /
    • pp.15-32
    • /
    • 1991
  • Recently, the rational methods of pavement design and analysis using the resilient modulus, MR, as fundamental input material property have been increasingly adopted in major advanced countries. Since the development of 1986 AASHTO Guide for Design of Pavement Structures, many researches concerning the resilient characteristics of various pavement materials as well . as development of reliable testing methods have been actively performed. Anticipating the use of Mn-based pavement design and analysis such as resilient characteristics and Mn - CBR relat - ionship of domestic subgrade soils were performed including development of a standard MR test procedure suitable for subgrade soils in our country.

  • PDF

Soil Compaction Management Methodology using Mechanical Property (역학적 정수를 이용한 다짐관리기법에 관한 연구)

  • 강규진;최준성;김종민;노한성;김태수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.127-132
    • /
    • 2002
  • While the pavement design is based on mechanical property such dynamic elastic modulus, the quality of highway subgrade during construction is controled by the optimum moisture content(OMC) and maximum dry density(${\gamma}$$\_$dmax/). However, since the quality control based on the OMC and maximum dry density does not consider the mechanical characteristics, there is a conceptional gap between design and PMS(pavement management system). Therefore, it is necessary to develope a new qualify control system using mechanical property for highway construction in more rational way. To achieve this goal, it is planned to perform various laboratory tests to collect mechanical properties of subgrade soil samples from several highway construction sites and to propose the relationship between dry unit weight (or OMC) and mechanical parameters. In this paper, the experimental data so far obtained are presented and analyzed. In addition, further research plan is presented and discussed.

  • PDF

An Analytical Study of Flexible Pavement Design Using Resilient Modulus Model of Expanded Polystyrene (EPS) (EPS 회복탄성계수 모델을 이용한 연성포장설계의 해석적 연구)

  • Park, Ki-Chul;Chang, Yong-Chai
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.35-44
    • /
    • 2015
  • The resilient modulus model of EPS geofoam to be used for a flexible pavement design was developed. In this study, the model was applied to design the flexible pavement and to predict the magnitude of the deformation of EPS geofoam blocks as a subgrade in the flexible pavement structure by using the resilient modulus model of EPS geofoam (RMEG) program. The RMEG program presented how much the EPS geofoam subgrade settled over the designed duration and the AASHTO flexible pavement design equation with the resilient modulus of EPS geofoam noted that how long the flexible pavement endured under traffic loads with 70% reliability for the estimated duration with less than 5mm vertical deformation during 20.6 years without the significant pavement distress as a substitute material for the natural soils.

A Feasibility Study on Resilient Modulus of Expanded Polystyrene (EPS) Geofoam as a Flexible Pavement Subgrade Material (연성포장의 노반재료로서 EPS 지오폼의 회복탄성계수에 관한 적합성 연구)

  • Park, Ki-Chul;Chang, Yong-Chai
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.63-70
    • /
    • 2011
  • Expanded Polystyrene (EPS) is a type of geosynthetic material manufactured with various strengths, unit weights, and dimensions. Due to recent advances in research on EPS, the use of EPS has increased dramatically. This super light weight material has a unit weight of approximately $0.16{\sim}0.47kN/m^3$, equivalent to 6.3~15.7 of that of most natural soils with conditions of fill materials. In spite of this advantage, it is noted that no standard method of resilient modulus test on EPS geofoam was reported and no literature on resilient modulus test methods for EPS geofoam exist. The main object of this study was to investigate feasibility of the resilient modulus of EPS when it was applied for flexible pavement. The investigation of the feasibility was completed based on the results from triaxial tests.