DOI QR코드

DOI QR Code

Stiffness Characterization of Subgrade using Crosshole-Type Dynamic Cone Penetrometer

크로스홀 형태의 동적 콘 관입기를 이용한 노반의 강성특성 평가

  • Hong, Won-Taek (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Choi, Chan Yong (Advanced Infrastructure Research Team, Korea Railroad Research Institute) ;
  • Lim, Yujin (Dept. of Civil, Environmental and Railroad Engrg., Paichai Univ.) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 홍원택 (고려대학교 건축사회환경공학부) ;
  • 최찬용 (한국철도기술연구원 선진인프라연구팀) ;
  • 임유진 (배재대학교 건설환경철도공학과) ;
  • 이종섭 (고려대학교 건축사회환경공학부)
  • Received : 2017.12.27
  • Accepted : 2018.02.06
  • Published : 2018.02.28

Abstract

In order to support the load of the train with enough stiffness, a study on an effective method for the characterization of the stiffness of the compacted subgrade is required. In this study, the crosshole-type dynamic cone penetrometer (CDCP) is used for the stiffness characterization of the subgrade along the depth. For the application of the CDCP test, three points of compacted subgrades are selected as the study sites. For the study sites, CDCP test, in-situ density test, and light falling weight deflectometer (LFWD) test are conducted. As the results of CDCP tests, shear wave velocity profiles are obtained by using the travel times and the travel distances of the shear waves along the depth. In addition, maximum shear modulus ($G_{max}$) profiles are estimated by using the density of the subgrades and the shear wave velocity profiles. The averaged maximum shear moduli at each testing point are highly correlated with the dynamic deflection moduli ($E_{vd}$) determined by LFWD tests. Therefore, a reliable stiffness characterization of the subgrade can be conducted by using CDCP tests. In addition, because CDCP characterizes the stiffness of the subgrade along the depth rather than a representative value, CDCP test may be effectively used for the stiffness characterization of the subgrade.

열차의 하중을 적절한 강성으로 지지하기 위하여 다짐시공된 노반의 효과적인 강성특성 평가 기법에 대한 연구가 요구된다. 본 연구에서는 상부노반에 대하여 크로스홀 형태의 동적 콘 관입기(CDCP)를 적용함으로써 심도에 따른 강성특성을 평가하고자 하였다. CDCP의 적용을 위하여 세 단면의 다짐시공 완료된 상부노반이 대상 현장으로 선택되었으며, 각각의 개소에 대하여 CDCP 관입실험 및 들밀도시험, 동평판재하시험(LFWD)이 수행되었다. CDCP 관입실험 결과, 심도에 따른 탄성파 발신시간 및 전단파 수신시간을 획득하였으며, 이를 이용하여 노반의 전단파속도 주상도를 획득하였다. 또한, 동일 개소에서 들밀도시험으로부터 획득한 노반의 밀도 및 전단파속도 주상도를 이용하여 심도에 따른 최대전단강성계수($G_{max}$)를 평가할 수 있었다. CDCP 관입실험 및 들밀도시험으로부터 평가된 최대전단강성계수와 LFWD시험으로부터 획득한 동탄성계수($E_{vd}$)를 상호비교한 결과 매우 우수한 선형관계를 보이므로, CDCP 관입실험으로부터 유효한 강성특성을 평가할 수 있을 것이라 판단되었다. 또한, CDCP 관입실험으로부터 도출되는 결과는 일정 심도에 대한 대표 강성특성이 아닌 심도에 따른 연속적인 강성특성 이므로 노반의 강성특성 평가에 효과적으로 이용될 수 있을 것이라 기대된다.

Keywords

References

  1. Al Shaer, A., Duhamel, D., Sab, K., Foret, G., and Schmitt, L. (2008), "Experimental Settlement and Dynamic behavior of a Portion of Ballasted Railway Track under High Speed Trains", Journal of Sound and Vibration, Vol.316, No.1, pp.211-233. https://doi.org/10.1016/j.jsv.2008.02.055
  2. ASTM D6951 (2009), "Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications", Annual Book of ASTM Standard 04.03, ASTM International, West Conshohocken, PA.
  3. ASTM E2583 (2015), "Standard Test Method for Measuring Deflections with a Light Weight Deflectometer (LWD)", Annual Book of ASTM Standard 04.03, ASTM International, West Conshohocken, PA.
  4. Byun, Y. H., Kim, J. H., and Lee, J. S. (2013), "Cone Penetrometer with a Helical-Type Outer Screw Rod for Evaluation of the Subgrade Condition", Journal of Transportation Engineering, 139, pp.115-122. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000504
  5. Byun, Y. H. and Lee, J. S. (2013), "Instrumented Dynamic Cone Penetrometer Corrected with Transferred Energy into a Cone Tip: A Laboratory Study", Geotechnical Testing Journal, Vol.36, No.4, pp.533-542. https://doi.org/10.1520/GTJ20120115
  6. Chebli, H., Clouteau, D., and Schmitt, L. (2008), "Dynamic Response of High-speed Ballasted Railway Tracks: 3D Periodic Model and in Situ Measurements", Soil Dynamics and Earthquake Engineering, 28, pp.118-131. https://doi.org/10.1016/j.soildyn.2007.05.007
  7. Choi, C. Y., Lee J. W., Lim Y., and Cho, H. (2015), "Correction Factors for Modulus Calculation Equation used in Light Weight Deflectometer Considering Track Foundation", Journal of the Korean Society for Railway, Vol.18, No.1, pp.53-62. https://doi.org/10.7782/JKSR.2015.18.1.53
  8. Clark, M., McCann, D.M., and Forde, M.C. (2002), "Infrared Thermographic Investigation of Railway Track Ballast", NDT & E International, 35, pp.83-94. https://doi.org/10.1016/S0963-8695(01)00032-9
  9. DIN 18 134 (1993), "Plattendruckversuch", Deutsches Institut fur Normung e. V.
  10. Elhakim, A. F., Elbaz, K., and Amer, M. I. (2014), "The use of Light Weight Deflectometer for in Situ Evaluation of Sand Degree of Compaction", HBRC Journal, Vol.10, No.3, pp.298-307. https://doi.org/10.1016/j.hbrcj.2013.12.003
  11. Fleming, P., Frost, M., and Lambert, J. (2007), "Review of Lightweight Deflectometer for Routine in Situ Assessment of Pavement Material Stiffness", Transportation research record: journal of the Transportation Research Board, (2004), pp.80-87.
  12. Hong, W. T., Byun, Y. H., Kim, S. Y., and Lee, J. S. (2016), "Cone Penetrometer Incorporated with Dynamic Cone Penetration Method for Investigation of Track Substructures", Smart Structures and Systems, Vol.18, No.2, pp.197-216. https://doi.org/10.12989/sss.2016.18.2.197
  13. Hong, W. T., Kim, S. Y., Lee, S. J., and Lee, J. S. (2017), "Strength and Stiffness Assessment of Railway Track Substructures using Crosshole-type Dynamic Cone Penetrometer", Soil Dynamics and Earthquake Engineering, 100, pp.88-97. https://doi.org/10.1016/j.soildyn.2017.05.021
  14. Kodicherla, S. P. K. and Nandyala, D. K. (2016), "Use of CPT and DCP based Correlations in Characterization of Subgrade of a Highway in Southern Ethiopia Region", International Journal of Geo-Engineering, Vol.7, No.11, DOI 10.1186/s40703-016-0025-8.
  15. Korea Rail Network Authority (2015), "Design Specification for Railroad: Road Bed", Ministry of Land, Infrastructure, and Transport, Republic of Korea, 1043.
  16. KS F 2312 (2004), "Test Method for Soil Compaction using a Rammer", Korean Standard Association, 12.
  17. Lim, Y., Kim, D. S., Cho, H. J., and Sagong, M. (2013), "Investigation of Stiffness Characteristics of Subgrade Soils under Tracks Based on Stress and Strain Levels", Journal of the Korean Society for Railway, Vol.16, No.5, pp.386-393. https://doi.org/10.7782/JKSR.2013.16.5.386
  18. Mohammadi, S. D., Nikoudel, M. R., Rahimi, H., and Khamehchiyan, M. (2008), "Application of the Dynamic Cone Penetrometer (DCP) for Determination of the Engineering Parameters of Sandy Soils", Engineering Geology, Elsevier, Vol.101, No.3, pp.195-203. https://doi.org/10.1016/j.enggeo.2008.05.006
  19. Nazzal, M., Abu-Farsakh, M., Alshibli, K., and Mohammad, L. (2004), "Evaluating the Potential use of a Portable LFWD for Characterizing Pavement Layers and Subgrades", Geotechnical Engineering for Transportation Projects, pp.915-924.
  20. Robins, N., Clover, R., and Singh, C. (2009), "A Climate for Recovery: the Colour of Stimulus Goes Green", HSBC Global Research, 25, pp.1-45.
  21. Santamarina, J. C., Klein, K. A., and Fam, M. A. (2001), "Soils and Waves-Particulate Materials Behavior, Characterization and Process Monitoring", Jhon Wiley and Sons, NY, p.448.
  22. Selig, E.T. and Waters, J.M. (1994), "Track Geotechnology and Substructures Management", Thomas Telford, London, p.141.