• 제목/요약/키워드: subcooling system

검색결과 91건 처리시간 0.024초

저온용 대체냉매의 성능 특성 연구 (Performance Characteristics Study on an Alternative Refrigerant in Low Temperature Applications)

  • 신정섭;김만회
    • 한국수소및신에너지학회논문집
    • /
    • 제27권4호
    • /
    • pp.462-469
    • /
    • 2016
  • This paper presents the results of thermodynamic cycle analysis and performance tests of alternative mixtures in low temperature applications. Two near-azeotropic binary mixtures R-152a/R-1270 (35:65 by wt.%) and R-290/E170 (35:65 by wt.%) are considered in this study. They have zero ODP (Ozone Depletion Potential) and much lower GWP (Global Warming Potential) than R-404A which is an alternative of R-502. Refrigeration cycle characteristics such as cooling capacity, coefficient of performance, suction and discharge pressures and temperatures are compared to those for the baseline refrigerants (R-502 and R-404A) cycles. The performance tests are conducted at the evaporation and condensation temperatures of $5^{\circ}C$ and $45^{\circ}C$, subcooling and superheating temperatures of $5^{\circ}C$, respectively. Performance comparisons between baseline and alternative refrigerants are conducted on the same cooling capacity. The system performance of newly proposed refrigerant mixtures show promising results.

노심보충수탱크의 직접접촉응축에 대한 MARS의 계산능력평가 (ASSESSMENT OF MARS FOR DIRECT CONTACT CONDENSATION IN THE CORE MAKE-UP TANK)

  • 박근태;박익규;이승욱;박현식
    • 한국전산유체공학회지
    • /
    • 제19권1호
    • /
    • pp.64-72
    • /
    • 2014
  • This study aimed at assessing the analysis capability of thermal-hydraulic computer code, MARS for the behaviors of the core make-up tank (CMT). The sensitivity study on the nodalization to simulate the CMT was conducted, and the MARS calculations were compared with KAIST experimental data and RELAP5/MOD3.3 calculations. The 12-node model was fixed through a nodalization study to investigate the effect of the number of nodes in the CMT (2-, 4-, 8-, 12-, 16-node). The sensitivity studies on various parameters, such as water subcooling of the CMT, steam pressure, and natural circulation flow were done. MARS calculations were reasonable in the injection time and the effects of several parameters on the CMT behaviors even though the mesh-dependency should be properly treated for reactor applications.

불등이중관에 있어서의 유동특성과 번아우트 (제3보, 자연대유의 경우) (A Study on the Characteristic of Flow and Burnout in a Boiling Annulus (Part 2, Case of Natural Convection))

  • 조용철
    • 기계저널
    • /
    • 제16권2호
    • /
    • pp.84-91
    • /
    • 1976
  • An experimental investigation of the natural circulating boiling flow characteristic in three cases of annulus with different outer diameter, and the effect of annular gap size on the burnout behavior is presented. The experimental work was conducted for each case of test section at system pressure of $1kg/cm^2$ and inlet subcooling $0-20^{\circ}C$ in the full range of throttling ratio. As the result, the following facts were found. 1) With the increase of ${\Delta}T_{sub}$, $D_{2}$ and A/A_{o}$, $q_{BO}$ increases on the whole, and with the decrease of ${\Delta}T_{sub}$ and $D_{2}$, hydrodynamic instability is accelerated to happen prematually. 2)With the increase of ${\Delta}T_{sub}$, $D_{2}$ and A/A_{o}$ burnout characteristic shows the high velocitylow quality burnout, and with the decrease, low-velocity-high quality burnout. 3)With the decrease of A/A_{o}$, hyddrodynamic instability is singnificantly restrained and the difference of $q_{BO}$ in each $D_2$ under same condition is gradually reduced, finally converging into $1.9{\times}10^{5}kcal/m^{2}-hr$.

  • PDF

임계압력 근처에서의 환형관 채널에 대한 열전달 특성 연구 (Heat Transfer Characteristics of an Annulus Channel Cooled with R-134a Fluid near the Critical Pressure)

  • 홍성덕;천세영;김세윤;백원필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2094-2099
    • /
    • 2004
  • An experimental study on heat transfer characteristics near the critical pressure has been performed with an internally-heated vertical annular channel cooled by R-134a fluid. Two series of tests have been completed: (a) steady-state critical heat flux (CHF) and (b) heat transfer tests for pressure reduction transients through the critical pressure. In the present experimental range, the steady-state CHF decreases with the increase of the system pressure For a fixed inlet mass flux and subcooling, the CHF falls sharply at about 3.8 MPa and shows a trend toward converging to zero as the pressure approaches the critical point of 4.059 MPa. The CHF phenomenon near the critical pressure does not lead to an abrupt temperature rise of the heated wall because the CHF occurred at remarkably low power levels. In the pressure reduction transient experiments, as soon as the pressure passed through the critical pressure, the wall temperatures rise rapidly up to a very high value due to the occurrence of the departure from nucleate boiling. The wall temperature reaches a maximum at the saturation point of the outlet temperature, then tends to decrease gradually.

  • PDF

Heat Transfer Characteristics of an Internally-Heated Annulus Cooled with R-134a Near the Critical Pressure

  • Hong, Sung-Deok;Chun, Se-Young;Kim, Se-Yun;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.403-414
    • /
    • 2004
  • An experimental study of heat transfer characteristics near the critical pressure has been performed with an internally-heated vertical annular channel cooled by R-134a fluid. Two series of tests have been completed: (a) steady-state critical heat flux (CHF) tests, and (b) heat transfer tests for pressure reduction transients through the critical pressure. In the present experimental range, the steady-state CHF decreases with increase of the system pressure for fixed inlet mass flux and subcooling. The CHF falls sharply at about 3.8 MPa and shows a trend towards converging to zero as the pressure approaches the critical point of 4.059 MPa. The CHF phenomenon near the critical pressure does not lead to an abrupt temperature rise of the heated wall, because the CHF occurs at remarkably low power levels. In the pressure reduction transients, as soon as the pressure passes below the critical pressure from the supercritical pressure, the wall temperatures rise rapidly up to very high values due to the departure from nucleate boiling. The wall temperature reaches a maximum at the saturation point of the outlet temperature, and then tends to decrease gradually.

TRIGGERING AND ENERGETICS OF A SINGLE DROP VAPOR EXPLOSION: THE ROLE OF ENTRAPPED NON-CONDENSABLE GASES

  • Hansson, Roberta Concilio
    • Nuclear Engineering and Technology
    • /
    • 제41권9호
    • /
    • pp.1215-1222
    • /
    • 2009
  • The present work pertains to a research program to study Molten Fuel-Coolant Interactions (MFCI), which may occur in a nuclear power plant during a hypothetical severe accident. Dynamics of the hot liquid (melt) droplet and the volatile liquid (coolant) were investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography. The current study is concerned with the MISTEE-NCG test campaign, in which a considerable amount of non-condensable gases (NCG) are present in the film that enfolds the molten droplet. The SHARP images for the MISTEE-NCG tests were analyzed and special attention was given to the morphology (aspect ratio) and dynamics of the air/ vapor bubble, as well as the melt drop preconditioning. Energetics of the vapor explosion (conversion ratio) were also evaluated. The MISTEE-NCG tests showed two main aspects when compared to the MISTEE test series (without entrapped air). First, analysis showed that the melt preconditioning still strongly depends on the coolant subcooling. Second, in respect to the energetics, the tests consistently showed a reduced conversion ratio compared to that of the MISTEE test series.

과냉 액체질소 내에서 순간적 열확산 실험 (Thermal diffusion experiment of impulsive heat in subcooled liquid nitrogen)

  • 최진혁;하찬준;변정주;장호명;김호민;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권1호
    • /
    • pp.65-70
    • /
    • 2006
  • Transient heat transfer caused by an impulsive heating in subcooled liquid nitrogen is investigated experimentally. This study is part of out ongoing efforts directed to a stable cryogenic cooling system lot superconducting fault current limiters (SFCL). A thin heater attached by epoxy on one surface of a GFRP plate is immersed in liquid-nitrogen bath at temperatures between 77 K and 55 K. A strong heat flux up to $150W/cm^2$ is generated lot 100 ms, and the temperature of the heater sulfate is measured as a function of time. The behavior of bubbles on the heating surface can be explained by comparing the measured temperature history for vertical and two horizontal (up and down) orientations. It is concluded that the subcooling of liquid nitrogen below 70 K is very effective in suppressing bubbles, resulting in better thermal protection and faster recovery from an impulsive heat.

수평 평활관에서 관직경 및 표면 과냉도가 R1234ze(E) 및 R1233zd(E) 막응축 열전달에 미치는 영향 (Effects of Tube Diameter and Surface Sub-Cooling Temperature on R1234ze(E) and R1233zd(E) Film Condensation Heat Transfer Characteristics in Smooth Horizontal Laboratory Tubes)

  • 전동순;고지운;김선창
    • 설비공학논문집
    • /
    • 제29권5호
    • /
    • pp.231-238
    • /
    • 2017
  • HFO refrigerants have recently come to be regarded as promising alternatives to R134a for use in turbo chillers. This study provides results from experiments evaluating the film condensation heat transfer characteristics of HFO refrigerants R1234ze(E) and R1233zd(E) on smooth horizontal laboratory tubes. The experiments were conducted at a saturation vapor temperature of $38.0^{\circ}C$ with surface sub-cooling temperatures in the range of $3{\sim}15^{\circ}C$. We observe that the film condensation heat transfer coefficient decreases as surface sub-cooling temperatures increase. In the case of laboratory tubes with a diameter of 19.05 mm, the film condensation heat transfer coefficients of R1234ze(E) and R1233zd(E) were approximately 11% and 20% lower than those of R134a, respectively. Furthermore, our investigation of the effect of tube diameter on film condensation heat transfer coefficients, demonstrates an inverse relationship where the film condensation heat transfer coefficient increases as laboratory tube diameter decreases. We propose experimental correlations of Nusselt number for R1234ze(E) and R1233zd(E), which yield a ${\pm}20%$ error band.

환상이중원관에서 R-113의 비등열전달에 관한 연구 (A Study on the Boiling Heat Transfer of R-113 in a Concentric Annular Tube)

  • 김명환;김철환;오철;윤석훈;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권5호
    • /
    • pp.12-23
    • /
    • 1994
  • The two-phase flow is observed in power plants, chemical process plants, and refrigeration systems etc., and it is very important to solve the heat transfer mechanism of a boiler, an automic reactor, a condenser and various types of evaporators. Recently, the problem of two phase heat transfer is braught up in many regions with development of energy saving technique. In flow boiling system it is necessary to store data in each condition because the heat transfer characteristics of flow boiling region vary by the change of flow pattern and the magnetude of heat flux to tube length, and be subtly affected by the flow and heating condition. So basic study for knowing flow pattern in heat transfer region and the relation between heat transfer characteristic and flow condition is desired to accumulate data in wide variety of liquid and flow system in the study of heat transfer of two phase flow. In this study R-113 was selected as working fluid whose properties were programmed by least square method, and experiment was conducted in the region of mass flow $1.628{\times}10^6$~$4.884{\times}10^6$/kg/$m^2$hr with inlet subcooling 10~3$0^{\circ}C$, sustaining test section inlet pressure to 1.5kg$_f$/$cm^2$abs.

  • PDF

RELAP5 / MOD3/ KAERI의 임계유동모델을 위한 실제적 배출계수의 정량화 (Quantification of Realistic Discharge Coefficients for the Critical Flow Model of RELAP5/MOD3/KAERl)

  • 권태순;정법동;이원재;이남호;허재영
    • Nuclear Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.701-709
    • /
    • 1995
  • RELAP5 /MOD3/KAERl의 임계유동모델을 위한 실제적인 배출계수들을 9개의 MARVIKEN 임계유동실험 의 평가계산을 통하여 과냉각과 이상임계유동에 대하여 구하였다. 선택된 실험에는 높은 초기 과냉각도와 큰 노즐 세 장비(L/D)인 것들이 포함되었다. 코드의 평가결과는 RELAP5/MOD3/KAERI은 과냉각임계유동을 크게 예측하고 이 상임계유동은 작게 예측함을 보이고 있다. 이러한 결과들을 이용하여 임계유동모델의 실제적인 배출계수들을 반복법으로 정량화 하였다. 실제적인 배출계 수는 과냉각임계유동이 0.89 그리고 이상임계유동이 1.07로 결정되었으며 관련 표준편차는 각 각 0.0349과 0.1189이다. 본 연구로부터 얻어진 결과는 대형냉각재 상실사고의 실제적인 계통반응 계산과 비상노심냉각계통 성능평가에 적용할 수 있다.

  • PDF