• 제목/요약/키워드: sub-cooled nitrogen

검색결과 42건 처리시간 0.029초

초전도케이블 냉각시험 (Cooling Test of The HTS Power Cable)

  • 염한길;고득용;홍용주;김익생;김춘동;김도형
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 학술대회 논문집
    • /
    • pp.295-297
    • /
    • 2003
  • Cryogenic systems is requirement for the operation of HTS power cables. In general, HTS power cables require temperature below 77K, a temperature that can be achieved from the liquid nitrogen or sub-cooled LN2. HTS power cable is needed for sufficient refrigeration to overcome its low temperature heat loading. This loading typically comes in two forms : (1) heat leaks from the surroundings and (2) internal heat generation. This paper is a explanation for the cooling test of 10m HTS power cable.

  • PDF

1MVA 고온 초전도 변압기 개념설계 (Conceptual Design of 1 MVA HTS Transformer)

  • 김우석;한송엽;최경달;주형길;홍계원
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.233-236
    • /
    • 2002
  • A conceptual design of single phase high Tc superconducting (HTS) 1MVA transformer was presented in this paper. The rated voltages of each sides of the transformer are 22.9kV /6.6kV respectively. Double pancake windings of BSCCO-2223 HTS tape and the room temperature shell type core are adopted. The HTS tapes of windings are going to be cooled down to 65K by sub-cooled liquid nitrogen. A cryostat made of nonmagnetic and nonconducting material with a bore is going to be used in order to locate the core out of the cryostat. This conceptual design will be modified and a fabrication of the machine is going to be based on the presented design in this paper.

  • PDF

Simulated winding temperature distribution of HTS transformer cooled by sub-cooled liquid nitrogen

  • Han, J.H.;Choi, K.D.;Kim, T.Y.;Chang, T.;Kim, W.S.;Kim, S.H.;Hahn, S.Y.;Kim, S.R.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권4호
    • /
    • pp.51-54
    • /
    • 2004
  • A 1 MV A single phase high temperature superconducting (HTS) transformer was manufactured. In order to reduce AC loss generated in the HTS winding, winding was concentrically arranged. Operation temperature is set at 65K to increase the critical current and reduce the amount of HTS tape usage and the volume. The cryogenic system which consists of main cryostat with the windings and secondary cryostat with 2 GM coolers and cryopump on top and heat exchanger inside is also designed and the cooling performance is simulated with Fluent. Temperature distribution of the windings is investigated whether the windings are kept under designed operation temperature.

Cooling Performance Test of the KEPCO HTS Power Cable

  • Yang, H.S.;Kim, D.L.;Sohn, S.H.;Lim, J.H.;Choi, H.O.;Choi, Y.S.;Ryoo, H.S.;Hwang, S.D.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권2호
    • /
    • pp.41-43
    • /
    • 2009
  • The HTS power cable system of 3-phase 100-m class has been tested at the KEPCO's Gochang power testing center in Korea during 8,000 hours or more for investigating long-term operating performance. The system is rated 22.9kV, 1250A and is cooled with sub cooled liquid nitrogen. Several cooling performance tests such as cooling capacity, heat load, AC loss, temperature stability and thermal cycle were performed at operating temperature of 66.4K and several different temperatures.

The Structure Determination of La2/3-xLi3x1/3-2xTiO3 by the Powder Neutron and X-ray Diffraction

  • Kang, Eun-Tae;Kwon, Young-Jean
    • 한국세라믹학회지
    • /
    • 제40권6호
    • /
    • pp.513-518
    • /
    • 2003
  • La/sub 2/3-x/Li/sub 3x/□/sub 1/3-2x/TiO₃ compounds with x=0.13 and 0.12 were prepared by slow cooling (x=0.13) and rapid quenching (x=0.12) into the liquid nitrogen after sintering at 1350℃ for 6 h. Their crystal structure has been determined by Rietveld refinement of both the powder neutron and X-ray diffraction data. From neutron diffraction data, we found that the main phase was not tetragonal (P4/mmm), but trigonal (R3cH). The refinement of neutron diffraction for the slow cooled samples were in a good agreement with a new model; a mixture of trigonal (R3cH, 45.7 wt%), tetragonal (p4/mmm, 37.0 wt%), and Li/sub 0.57/Ti/sub 0.86/O₂(pbnm, 17.2 wt%), but the quenched sample was found not to contain tetragonal (p4/mmm). X-ray diffraction data couldn't be well fitted because of the Poor scattering factor of lithium ions and the similar reflection patterns among trigonal (R3cH), tetragonal (p4/mmm), and cubic (Pm3m). We also knew that one transport bottlenecks is destroyed by one La vacancy in the case of trigonal (R3cH).

Cryogenic Systems for HTS Power Cables

  • Yeom, Han-Kil;Koh, Deuk-Yong;Lee, Bong-Kyu;Kim, Ig-Seang
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.133-135
    • /
    • 2003
  • Cryogenic systems are requirement for the operation of HTS power cables. In general, HTS power cables require temperature below 77K, a temperature that can be achieved from the liquid nitrogen at latm or sub-cooled LN2 above latm. HTS power cable needs sufficient refrigeration to overcome its low temperature heat loading. This loading typically cones in two forms : (1) heat leaks from the surroundings and (2) internal heat generation. This paper explains the cooling test system of 10m HTS power cable. This system is composed of storage dewar, auto fill system, core cryostat and cold-box. Storage dewar is a LN2 storage tank and auto fill system is a LN2 supply device to the sub-cooler, Core cryostat is a LN2 flow line. Cold box is a control unit of temperature and flow rate. It is composed of control valve, flow meter, sub-cooler and circulation pump, etc..

Numerical Simulation of Cavitating Flows on a Foil by Using Bubble Size Distribution Model

  • Ito, Yutaka;Nagasaki, Takao
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.216-227
    • /
    • 2004
  • A new cavitating model by using bubble size distribution based on bubbles-mass has been proposed. Both liquid and vapor phases are treated with Eulerian framework as a mixture containing minute cavitating bubbles. In addition vapor phase consists of various sizes of vapor bubbles, which are distributed to classes based on their mass. The bubble number-density for each class was solved by considering the change of the bubble-mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method, the bubble-mass is treated as an independent variable, and the other dependent variables are solved in spatial coordinates and bubble-mass coordinate. Firstly, we employed this method to calculate bubble nucleation and growth in stationary super-heated liquid nitrogen, and bubble collapse in stationary sub-cooled one. In the case of bubble growth in super-heated liquid, bubble number-density of the smallest class based on its mass is increased due to the nucleation. These new bubbles grow with time, and the bubbles shift to larger class. Therefore void fraction of each class is increased due to the growth in the whole class. On the other hand, in the case of bubble collapse in sub-cooled liquid, the existing bubbles are contracted, and then they shift to smaller class. It finally becomes extinct at the smallest one. Secondly, the present method is applied to a cavitating flow around NACA00l5 foil. Liquid nitrogen and liquid oxygen are employed as working fluids. Cavitation number, $\sigma$, is fixed at 0.15, inlet velocities are changed at 5, 10, 20 and 50m/s. Inlet temperatures are 90K in case of liquid nitrogen, and 90K and 1l0K in case of liquid oxygen. 110K of oxygen is corresponding to the 90K of nitrogen because of the same relative temperature to the critical one, $T_{r}$=$T/T_c^{+}$. Cavitating flow around the NACA0015 foils was properly analyzed by using bubble size distribution. Finally, the method is applied to a cavitating flow in an inducer of the LE-7A hydrogen turbo-pump. This inducer has 3 spiral foils. However, for simplicity, 2D calculation was carried out in an unrolled channel at 0.9R cross-section. The channel moves against the fluid at a peripheral velocity corresponding to the inducer revolutions. Total inlet pressure, $Pt_{in}$, is set at l00KPa, because cavitation is not generated at a design point, $Pt_{in}$=260KPa. The bubbles occur upstream of the foils and collapse between them. Cavitating flow in the inducer was successfully predicted by using the bubble size distribution.

  • PDF

500Ps급 상용차량 디젤엔진을 이용한 선박용 디젤엔진 개발 연구 (A Study for Development of a Marine Diesel Engine from a 500Ps Commercial Vehicle Diesel Engine)

  • 심한섭
    • 한국기계가공학회지
    • /
    • 제12권6호
    • /
    • pp.125-131
    • /
    • 2013
  • This study was carried out to develop a diesel engine for marine propulsion. This marine diesel engine was developed based on a 500Ps vehicle diesel engine. Many main parts, such as the intercooler, radiator, and engine controller were designed for the marine diesel engine. The intercooler was designed to be of sea water cooling type; inlet air is cooled by sea water. Engine coolant is cooled by sea water in the radiator too. The water cooling heat exchanger has high cooling performance. In the cooling system, consists of the intercooler and the radiator, the sea water passes through the intercooler and then the radiator, in sequence. This process is very effective compared to the reverse method in which sea water passes through the radiator and then the intercooler, in sequence. The control performance of the engine controller and the fuel injection rate were improved using an engine speed controller. This system was tested on an engine dynamometer and an exhaust gas analyzer using the marine diesel engine test method. Test results show that the 500Ps marine diesel engine satisfied the IMO NOx regulations; Tier II.

4병렬 팬케이크 권선을 사용한 1 MVA 단상 고온초전도 변압기의 설계 및 제작 (Design and Fabricate a 1 MVA Single Phase HTS Transformer with Four Parallel Pancake Windings)

  • 김우석;김성훈;이상진;최경달;주형길;홍계원;한진호;한송엽;송회석;박정호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.723-725
    • /
    • 2003
  • The result of design and Partial fabrication of a 1 MVA single phase high temperature superconducting(HTS) transformer for power distributions are presented in this paper. The HTS windings are wound as double pancake windings which have advantages of uniform distribution of high voltage over the windings. the rated primary and secondary voltages are 22.9 kV and 6.6 kV respectively. Four HTS tapes are wound in parallel for secondary windings considering the rated currents of the transformer. The HTS windings will be cooled down to 65 K by natural convection of sub-cooled liquid nitrogen using a single-staged GM-cryocooler in order to make the stability of the HTS windings better. The iron core is designed as shell type and isolated from the liquid nitrogen by an FRP cryostat which have a room temperature bore. After the complete fabrication of the total HTS transformer system, performance test of the transformer will be carried out.

  • PDF

13.2kV/630A급 고온초전도 한류기의 절연설계 (Insulation Design for a 13.2kV/630A High-Tc Superconducting Fault Current Limiter)

  • 강형구;이찬주;고태국;석복렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.941-942
    • /
    • 2007
  • The superconducting fault current limiter (SFCL) consists of superconducting coil for limiting the fault current and cryogenic cooling system for keeping the coil in superconducting condition. The study on the insulation design for superconducting coil and cryogenic cooling system should be elaborately performed to develop a high voltage SFCL. In this paper, insulation design of solenoid coil for 13.2kV/630A SFCL is performed through the AC dielectric breakdown test and lightning impulse dielectric strength test. The dependence of dielectric characteristics on the magnitude of liquid nitrogen pressure is also investigated. Through the investigation, it is verified that dielectric characteristics of sub-cooled nitrogen are strongly enhanced by the pressurization. The electrical insulation design of 13.2kV/630A SFCL is performed by applying the experimental results. The successful insulation design for development of 13.2kV/630A SFCL is confirmed by AC dielectric breakdown tests.

  • PDF