• Title/Summary/Keyword: stub-column

Search Result 100, Processing Time 0.024 seconds

Structural behaviour of stainless steel stub column under axial compression: a FE study

  • Khate, Kevinguto;Patton, M. Longshithung;Marthong, Comingstarful
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1723-1740
    • /
    • 2018
  • This paper presents a Finite Element (FE) study on Lean Duplex Stainless Steel stub column with built-up sections subjected to pure axial compression with column web spacing varied at different position across the column flanges. The thicknesses of the steel sections were from 2 to 7 mm to encompass a range of section slenderness. The aim is to study and compare the strength and deformation capacities as well as the failure modes of the built-up stub columns. The FE results have been compared with the un-factored design strengths predicted through EN1993-1-4 (2006) + A1 (2015) and ASCE8-02 standards, Continuous Strength Method (CSM) and Direct Strength Method (DSM). The results showed that the design rules generally under predict the bearing capacities of the specimens. It's been observed that the CSM method offers improved mean resistance and reduced scatter for both classes of cross-sections (i.e. slender and stocky sections) compared to the EN1993-1-4 (2006) + A1 (2015) and ASCE 8-02 design rules which are known to be conservative for stocky cross-sections.

The Basic Study of Semi-Rigid Connections with Reformed T-stubs (개량 T-stub 반강접합부의 기초적 연구)

  • Yu, Bong Huoun;Lee, Myung Jae;Kim, WonKi
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.479-487
    • /
    • 1997
  • The use of semi-rigid joints can be considered in the beam-to-column connections of buildings. The advantages of semi-rigid joints can be found in the convenience of construction and the ability of effective moment distribution of members. This study is a basic step to acertain the application of middle high rise buildings by using reformed T-stub, of which rotation capacity is thought to be excellent compared with that of existing T-stubs. The tests of tensile and compressive elements of reformed T-stubs were performed to investigate the behavior of reformed T-stubs. The beam-to-column connections using reformed T-stubs are tested under monotonic loading. The structural behaviors of reformed T-stubs were understood qualitatively and the possibility of application of semi-rigid connections with reformed T-stub was acertained.

  • PDF

A Study on the Structural Property of Structural Steel Tubes under Axial Compression (중심압축력을 받는 일반구조용 강관의 구조성능에 관한 연구)

  • Kim, Jong Rak;Lee, Eun Taik;Lee, So Yeon;Baek, Ki Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.437-444
    • /
    • 2008
  • The use of imported structural steel tubes has been increased in domestic construction field because of its low price, but the mechanical properties of those steel tube are not verified exactly. This study includes coupon test and stub - column compression test on the structural steel tube. The compression test of stub - column was performed to characterize and quantify the material characteristic and strength of column compatibility, in which we compared the experiment formula and the abstract formula by the application of the LRFD standard formula and multiple column curve.

Behavior of polygonal concrete-filled steel tubular stub columns under axial loading

  • Zhang, Tao;Ding, Fa-xing;Wang, Liping;Liu, Xue-mei;Jiang, Guo-shuai
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.573-588
    • /
    • 2018
  • The objective of this paper is to investigate the mechanical performances of polygonal concrete-filled circular steel tubular (CFT) stub columns under axial loading through combined experimental and numerical study. A total of 32 specimens were designed to investigate the effect of the concrete strength and steel ratio on the compressive behavior of polygonal CFT stub columns. The ultimate bearing capacity, ductility and confinement effect were analyzed based on the experimental results and the failure modes were discussed in detail. Besides, ABAQUS was adopted to establish the three dimensional FE model. The composite action between the core concrete and steel tube was further discussed and clarified. It was found that the behavior of CFT stub column changes with the change of the cross-section, and the change is continuous. Finally, based on both experimental and numerical results, a unified formula was developed to estimate the ultimate bearing capacity of polygonal CFT stub columns according to the superposition principle with rational simplification. The predicted results showed satisfactory agreement with both experimental and FE results.

Numerical cyclic behavior of T-RBS: A new steel moment connection

  • Ataollahi, Saeed;Banan, Mohammad-Reza;Banan, Mahmoud-Reza
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1251-1264
    • /
    • 2016
  • After observing relatively poor performance of bolted web-welded flange beam-to-column connections during 1994 Northridge earthquake, various types of connections based on two concepts of: (i) strengthening the connection; and (ii) weakening the beam ends were proposed. Among these modified or newly proposed connections, bolted T-stub connection follows the concept of strengthening. One of the connections with the idea of weakening the beam ends is reduced beam section (RBS). In this paper, finite element simulation is used to study the cyclic behavior of a new proposed connection developed by using a combination of both mentioned concepts. Investigated connections are exterior beam-to-column connections designed to comply with AISC provisions. The results show that moment capacity and dissipated energy of the new proposed connection is almost the same as those computed for a T-stub connection and higher than corresponding values for an RBS connection.

Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns

  • Han, Lin-Hai;Zhao, Xiao-Ling;Tao, Zhong
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.51-74
    • /
    • 2001
  • A series of tests on concrete-filled SHS (Square Hollow Section) stub columns (twenty), columns (eight) and beam-columns (twenty one) were carried out. The main parameters varied in the tests are (1) Confinement factor (${\xi}$) from 1.08 to 5.64, (2) concrete compression strength from 10.7MPa to 36.6MPa, (3) tube width to thickness ratio from 20.5 to 36.5. (4) load eccentricity (e) from 15 mm to 80 mm and (5) column slenderness (${\lambda}$) from 45 to 75. A mechanics model is developed in this paper for concrete-filled SHS stub columns, columns and beam-columns. A unified theory is described where a confinement factor (${\xi}$) is introduced to describe the composite action between the steel tube and filled concrete. The predicted load versus axial strain relationship is in good agreement with stub column test results. Simplified models are derived for section capacities and modulus in different stages of the composite sections. The predicted beam-column strength is compared with that of 331 beam-column tests with a wide range of parameters. A good agreement is obtained. The predicted load versus midspan deflection relationship for beam-columns is in good agreement with test results. A simplified model is developed for calculating the member capacity of concrete-filled SHS columns. Comparisons are made with predicted columns strengths using the existing codes such as LRFD (AISC 1994), AIJ (1997), and EC4 (1996). Simplified interaction curves are derived for concrete-filled beam-columns.

The Structural Behavior of the Frames with Semi-Rigid Connections Using Reformed T-stubs (개량 T-stub를 이용한 반강접 골조의 거동)

  • Lee, Myung Jae;Cho, Won Hyuck
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.339-350
    • /
    • 2000
  • The objective of this study is to investigate the structural behavior of the beam to column connection with reformed T-stubs and to ascertain the application of semi-rigid connection with reformed T-stubs to middle high rise buildings. The tests of steel frame using semi-rigid connections with reformed T-stub and existing T-stub were performed under cyclic loading condition. Finite element analysis was also carried out and the results of FEM were compared with results of tests. The thickness of reformed T-stub and the distance of bolt were used for parameters in the analysis. The structural behaviors of reformed T-stub were understood qualitatively and the possibility of application of semi-rigid connections with reformed T-stubs was ascertained.

  • PDF

Initial Stiffness Evaluation of T-stub Connection (T-stub를 이용한 접합부의 초기강성 평가)

  • Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.805-813
    • /
    • 2006
  • The objective of this study is to ascertain the applicability of T-stub connection for rigid connections. Tests and analysis are focused on the initial stiffness and their results are compared with the case of general rigid connections. Influential factors are investigated from the analysis results.

Compressive behavior of concrete-filled square stainless steel tube stub columns

  • Dai, Peng;Yang, Lu;Wang, Jie;Ning, Keyang;Gang, Yi
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • Concrete-filled square stainless steel tubes (CFSSST), which possess relatively large flexural stiffness, high corrosion resistance and require simple joint configurations and low maintenance cost, have a great potential in constructional applications. Despite that the use of stainless steel may result in high initial cost compared to their conventional carbon steel counterparts, the whole-life cost of CFSSST is however considered to be lower, which offers a competitive choice in engineering practice. In this paper, a comprehensive experimental and numerical program on 24 CFSSST stub column specimens, including 3 austenitic and 3 duplex stainless steel square hollow section (SHS) stub columns and 9 austenitic and 9 duplex CFSSST stub columns, has been carried out. Finite element (FE) models were developed to be used in parametric analysis to investigate the influence of the tube thickness and concrete strength on the ultimate capacities more accurately. Comparisons of the experimental and numerical results with the predictions made by design guides ACI 318, ANSI/AISC 360, Eurocode 4 and GB 50936 have been performed. It was found that these design methods generally give conservative predictions to the ultimate capacities of CFSSST stub columns. Improved calculation methods, developed based on the Continuous Strength Method, have been proposed to provide more accurate estimations of the ultimate resistances of CFSSST stub columns. The suitability of these proposals has been validated by comparison with the test results, where a good agreement between the predictions and the test results have been achieved.

Modeling Parameters for Column-Tree Type Steel Beam-Column Connections (컬럼-트리 형식 철골모멘트 접합부의 모델링 변수제안)

  • An, Heetae;Kim, Taewan;Yu, Eunjong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.59-68
    • /
    • 2023
  • The column-tree type steel beam-column connections are commonly used in East Asian countries, including Korea. The welding detail between the stub beam and column is similar to the WUF-W connection; thus, it can be expected to have sufficient seismic performance. However, previous experimental studies indicate that premature slip occurs at the friction joints between the stub and link beams. In this study, for the accurate seismic performance evaluation of column-tree type moment connections, a moment-slip model was proposed by investigating the previous test results. As a result, it was found that the initial slip occurred at about 25% of the design slip moment strength, and the amount of slip was about 0.15%. Also, by comparing the analysis results from models with and without the slip element, the influence of slip on the performance of overall beam-column connections was examined. As the panel zone became weaker, the contribution of slip on overall deformation became greater, and the shear demand for the panel zone was reduced.