• 제목/요약/키워드: structure inference

검색결과 412건 처리시간 0.035초

Bayesian-based seismic margin assessment approach: Application to research reactor

  • Kwag, Shinyoung;Oh, Jinho;Lee, Jong-Min;Ryu, Jeong-Soo
    • Earthquakes and Structures
    • /
    • 제12권6호
    • /
    • pp.653-663
    • /
    • 2017
  • A seismic margin assessment evaluates how much margin exists for the system under beyond design basis earthquake events. Specifically, the seismic margin for the entire system is evaluated by utilizing a systems analysis based on the sub-system and component seismic fragility data. Each seismic fragility curve is obtained by using empirical, experimental, and/or numerical simulation data. The systems analysis is generally performed by employing a fault tree analysis. However, the current practice has clear limitations in that it cannot deal with the uncertainties of basic components and accommodate the newly observed data. Therefore, in this paper, we present a Bayesian-based seismic margin assessment that is conducted using seismic fragility data and fault tree analysis including Bayesian inference. This proposed approach is first applied to the pooltype nuclear research reactor system for the quantitative evaluation of the seismic margin. The results show that the applied approach can allow updating by considering the newly available data/information at any level of the fault tree, and can identify critical scenarios modified due to new information. Also, given the seismic hazard information, this approach is further extended to the real-time risk evaluation. Thus, the proposed approach can finally be expected to solve the fundamental restrictions of the current method.

하이브리드 퍼지뉴럴네트워크의 알고리즘과 구조 (Algorithm and Architecture of Hybrid Fuzzy Neural Networks)

  • 박병준;오성권;김현기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.372-372
    • /
    • 2000
  • In this paper, we propose Neuro Fuzzy Polynomial Networks(NFPN) based on Polynomial Neural Network(PNN) and Neuro-Fuzzy(NF) for model identification of complex and nonlinear systems. The proposed NFPN is generated from the mutually combined structure of both NF and PNN. The one and the other are considered as the premise part and consequence part of NFPN structure respectively. As the premise part of NFPN, NF uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. As the consequence part of NFPN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. NFPN is available effectively for multi-input variables and high-order polynomial according to the combination of NF with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. In order to evaluate the performance of proposed models, we use the nonlinear function. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously.

  • PDF

도착 및 이탈시점을 이용한 다중서버 대기행렬 추론 (An Inference Method of a Multi-server Queue using Arrival and Departure Times)

  • 박진수
    • 한국시뮬레이션학회논문지
    • /
    • 제25권3호
    • /
    • pp.117-123
    • /
    • 2016
  • 본 연구는 다중서버 대기행렬시스템의 관측이 제한되어 있는 경우에 시스템 내부 행태를 추론하는 데에 그 목적이 있다. 대기행렬시스템 분석에 있어 도착 및 서비스시간에 자기상관성이 존재하면 이론적으로 모형화하기가 매우 복잡하고 어렵다. 이에 따라 다양한 분석 기법 및 확률과정 모형들이 개발되었다. 본 논문에서는 외부 관측치에 존재하는 자기상관성과 내부 행태를 관측하기 어려운 경우에 대한 추론 방법을 소개한다. 선행연구의 가정을 완화하여 추론 방법을 제시하고 그에 대한 보조정리 및 정리를 제시한다. 제시된 비모수적 방법을 적용하면 서비스시간에 자기상관성이 존재하더라도 외부 관측치만을 사용하여 다중서버 대기행렬의 내부 행태를 추론할 수 있다. 주요 내부 추론 결과로는 대기시간과 서비스시간을 사용하였다. 또한 제시된 방법의 타당성 검증을 위해 실험 결과를 제시하였다.

Solving Continuous Action/State Problem in Q-Learning Using Extended Rule Based Fuzzy Inference System

  • Kim, Min-Soeng;Lee, Ju-Jang
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권3호
    • /
    • pp.170-175
    • /
    • 2001
  • Q-learning is a kind of reinforcement learning where the agent solves the given task based on rewards received from the environment. Most research done in the field of Q-learning has focused on discrete domains, although the environment with which the agent must interact is generally continuous. Thus we need to devise some methods that enable Q-learning to be applicable to the continuous problem domain. In this paper, an extended fuzzy rule is proposed so that it can incorporate Q-learning. The interpolation technique, which is widely used in memory-based learning, is adopted to represent the appropriate Q value for current state and action pair in each extended fuzzy rule. The resulting structure based on the fuzzy inference system has the capability of solving the continuous state about the environment. The effectiveness of the proposed structure is shown through simulation on the cart-pole system.

  • PDF

입자군집 최적화에 기초한 최적 퍼지추론 시스템의 구조설계 (Structural Design of Optimized Fuzzy Inference System Based on Particle Swarm Optimization)

  • 김욱동;이동진;오성권
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.384-386
    • /
    • 2009
  • This paper introduces an effectively optimized Fuzzy model identification by means of complex and nonlinear system applying PSO algorithm. In other words, we use PSO(Particle Swarm Optimization) for identification of Fuzzy model structure and parameter. PSO is an algorithm that follows a collaborative population-based search model. Each particle of swarm flies around in a multidimensional search space looking for the optimal solution. Then, Particles adjust their position according to their own and their neighboring-particles experience. This paper identifies the premise part parameters and the consequence structures that have many effects on Fuzzy system based on PSO. In the premise parts of the rules, we use triangular. Finally we evaluate the Fuzzy model that is widely used in the standard model of gas data and sew data.

  • PDF

Learning from the L2 Expository Text

  • Kim, Jung-Tae
    • 영어어문교육
    • /
    • 제10권3호
    • /
    • pp.21-40
    • /
    • 2004
  • This study Questioned what happens in L2 reading comprehension of the expository text, as measured by recall and inference-making abilities, when a L2 reader was induced to develop a content schema about the topic of a target text, but the structure of that schema departs from the structure of the target text Seventy-four. Korean university students read either the same version text twice (consistent condition) or two different version texts (inconsistent condition) with a three-day interval between the two readings. The results of a verification test indicate that, for those subjects with higher L2 reading proficiency, the inconsistent condition was more beneficial than the consistent condition for the inference-making task. On the other hand, for lower-level L2 readers, the consistent condition was more favorable for the recall task. It was concluded that inducing a structurally inconsistent schema through an L2 pre-reading would be beneficial only when the reader's L2 linguistic ability is proficient enough to produce necessary propositions from the pre-reading.

  • PDF

유전자 알고리즘을 사용한 퍼지-뉴럴네트워크 구조의 최적모델과 비선형공정시스템으로의 응용 (The Optimal Model of Fuzzy-Neural Network Structure using Genetic Algorithm and Its Application to Nonlinear Process System)

  • 최재호;오성권;안태천;황형수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.302-305
    • /
    • 1996
  • In this paper, an optimal identification method using fuzzy-neural networks is proposed for modeling of nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter identification using the intelligent schemes together with optimization theory, linguistic fuzzy implication rules, and neural networks(NNs) from input and output data of processes. Inference type for this fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and momentum coefficients of fuzz-neural networks(FNNs) and parameters of membership function are tuned using genetic algorithm(GAs). For the purpose of its application to nonlinear processes, data for route choice of traffic problems and those for activated sludge process of sewage treatment system are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling. The show that the proposed method can produce the intelligence model w th higher accuracy than other works achieved previously.

  • PDF

Electrical Fire Cause Diagnosis System based on Fuzzy Inference

  • Lee, Jong-Ho;Kim, Doo-Hyun
    • International Journal of Safety
    • /
    • 제4권2호
    • /
    • pp.12-17
    • /
    • 2005
  • This paper aims at the development of an knowledge base for an electrical fire cause diagnosis system using the entity relation database. The relation database which provides a very simple but powerful way of representing data is widely used. The system focused on database construction and cause diagnosis can diagnose the causes of electrical fires easily and efficiently. In order to store and access to the information concerned with electrical fires, the key index items which identify electrical fires uniquely are derived out. The knowledge base consists of a case base which contains information from the past fires and a rule base with rules from expertise. To implement the knowledge base, Access 2000, one of DB development tools under windows environment and Visual Basic 6.0 are used as a DB building tool. For the reasoning technique, a mixed reasoning approach of a case based inference and a rule based inference has been adopted. Knowledge-based reasoning could present the cause of a newly occurred fire to be diagnosed by searching the knowledge base for reasonable matching. The knowledge-based database has not only searching functions with multiple attributes by using the collected various information(such as fire evidence, structure, and weather of a fire scene), but also more improved diagnosis functions which can be easily wed for the electrical fire cause diagnosis system.

Predicting the buckling load of smart multilayer columns using soft computing tools

  • Shahbazi, Yaser;Delavari, Ehsan;Chenaghlou, Mohammad Reza
    • Smart Structures and Systems
    • /
    • 제13권1호
    • /
    • pp.81-98
    • /
    • 2014
  • This paper presents the elastic buckling of smart lightweight column structures integrated with a pair of surface piezoelectric layers using artificial intelligence. The finite element modeling of Smart lightweight columns is found using $ANSYS^{(R)}$ software. Then, the first buckling load of the structure is calculated using eigenvalue buckling analysis. To determine the accuracy of the present finite element analysis, a compression study is carried out with literature. Later, parametric studies for length variations, width, and thickness of the elastic core and of the piezoelectric outer layers are performed and the associated buckling load data sets for artificial intelligence are gathered. Finally, the application of soft computing-based methods including artificial neural network (ANN), fuzzy inference system (FIS), and adaptive neuro fuzzy inference system (ANFIS) were carried out. A comparative study is then made between the mentioned soft computing methods and the performance of the models is evaluated using statistic measurements. The comparison of the results reveal that, the ANFIS model with Gaussian membership function provides high accuracy on the prediction of the buckling load in smart lightweight columns, providing better predictions compared to other methods. However, the results obtained from the ANN model using the feed-forward algorithm are also accurate and reliable.

직접형 퍼지 적응 IIR 필터의 설계 (Design of Fuzzy Adaptive IIR Filter in Direct Form)

  • 유근택;배현덕
    • 대한전자공학회논문지TE
    • /
    • 제39권4호
    • /
    • pp.370-378
    • /
    • 2002
  • 수치와 언어적 데이터를 조합한 퍼지 추론은 적응 필터 알고리듬에서 적용되어 왔다. 적응 IIR필터 설계에서 퍼지 전치필터는 퍼지의 Sugeno의 방법을 사용하였으며 소속함수와 추론규칙은 정확성을 개선할 수 있도록 신경망을 통하여 각각 생성하였다. 제안된 알고리듬은 성능평가를 위하여 시스템 식별에 적용하고 필터의 파라미터의 추정특성과 수렴속도에 대하여 성능을 평가하였다. 이와 같은 실험결과 직접구조에서 기존의 알고리듬의 수렴속도보다 우수한 성능을 보였으며 제안된 방법이 안정성 및 국부최소 점에 대한 문제를 극복할 수 있음을 보였다.