• Title/Summary/Keyword: structure equation modeling

Search Result 287, Processing Time 0.026 seconds

A Study on Type Classification and Test Instruments Development of Reading Flow Using Structure Modeling (구조방정식 모형에 의한 독서 플로우의 유형 분류와 검사도구 개발에 관한 연구)

  • Lee, Byeong-Ki
    • Journal of Korean Library and Information Science Society
    • /
    • v.42 no.1
    • /
    • pp.29-49
    • /
    • 2011
  • Successful reading instruction of teacher librarian should be to identify the reading characteristics of students. Nevertheless, there are insufficient tools for to identify the reading characteristics. Thus, this study propose the reading flow type classification and test instruments reading flow using structure equation modeling. In order to verify the reading flow type, this study established 4 temporary model(Warner, Dunn & Dunn, MBTI, flow construction), conformed using AMOS structure equation modeling. The most fit model of 4 temporary model were conformed flow construction. Test instruments for reading flow was developed based on conformed flow construction. Suggested reading flow type classification consist of 16 styles in four dimensions. Reading flow test instruments consist of 28 item styles in four dimensions. The data for this study re-used 1,836 students questionary for prior paper of this researcher.

Three-Dimensional Simulation of Seismic Wave Propagation in Elastic Media Using Finite-Difference Method (유한차분법을 이용한 3차원 지진파 전파 모의)

  • 강태섭
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.81-88
    • /
    • 2000
  • The elastic wave equation is solved using the finite-difference method in 3D space to simulate the seismic wave propagation. It is based on the velocity-stress formulation of the equation of motion on a staggered grid. The nonreflecting boundary conditions are used to attenuate the wave field close to the numerical boundary. To satisfy the stress-free conditions at the free-surface boundary, a new formulation combining the zero-stress formalism with the vacuum one is applied. The effective media parameters are employed to satisfy the traction continuity condition across the media interface. With use of the moment-tensor components, the wide range of source mechanism parameters can be specified. The numerical experiments are carried out in order to test the applicability and accuracy of this scheme and to understand the fundamental features of the wave propagation under the generalized elastic media structure. Computational results show that the scheme is sufficiently accurate for modeling wave propagation in 3D elastic media and generates all the possible phases appropriately in under the given heterogeneous velocity structure. Also the characteristics of the ground motion in an sedimentary basin such as the amplification, trapping, and focusing of the elastic wave energy are well represented. These results demonstrate the use of this simulation method will be helpful for modeling the ground motion of seismological and engineering purpose like earthquake hazard assessment, seismic design, city planning, and etc..

  • PDF

Symbolic modeling of a 4-bar link flexible manipulator (4절기구를 가진 유연한 조작기의 기호적 모델링)

  • 이재원;주해호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.559-564
    • /
    • 1993
  • Nonlinear equation of motion of the flexible manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. The resulting equations of motion have a structure which is useful to reduce the number of terms calculated, to check correctness, or to extend the model to high order. A manipulator with a flexible 4 bar link mechanism is a constrained system whose equations are sensitive to numerical integration error. This constrained system is solved using the null space matrix of the constraint Jacobian matrix. Singular value decomposition is a stable algorithm to find the null space matrix.

  • PDF

Probabilistic Solution to Stochastic Soil Water Balance Equation using Cumulant Expansion Theory (Cumulant 급수이론을 이용한 추계학적 토양 물수지 방정식의 확률 해)

  • Han, Suhee;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.112-119
    • /
    • 2009
  • Based on the study of soil water dynamics, this study is to suggest an advanced stochastic soil water model for future study for drought application. One distinguishable remark of this study is the derivation of soil water dynamic controling equation for 3-stage loss functions in order to understand the temporal behaviour of soil water with reaction to the precipitation. In terms of modeling, a model with rather simpler structure can be applied to regenerate the key characteristics of soil water behavior, and especially the probabilistic solution of the derived soil water dynamic equation can be helpful to provide better and clearer understanding of soil water behavior. Moreover, this study will be the future cornerstone of applying to more realistic phenomenon such as drought management.

Modeling of Beam Structures from Modal Parameters (모달 파라미터를 이용한 보 구조물의 모델링)

  • Hwang, Woo-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.519-522
    • /
    • 2006
  • Accurate modeling of a dynamic system from experimental data is the bases for the model updating or heath monitoring of the system. Modal analysis or modal test is a routine process to get the modal parameters of a dynamic system. The modal parameters include the natural frequencies, damping ratios and mode shapes. This paper presents a new method that can derive the equations of motion for a dynamic system from the modal parameters obtained by the modal analysis or modal test. The present method based on the relation between the eigenvalues and eigenvectors of the state space equation derives the mass, damping and stiffness matrices of the system. The modeling of a cantilevered beam from modal parameters is an example to prove the efficiency and accuracy of the present method. Using the lateral displacements only, not the rotations, gives limited information for the system. The numerical verification up to now gives reasonable results and the verification with the test data is scheduled.

  • PDF

The SOC, Capacity-fade, Resistance-fade Estimation Technique using Sliding Mode Observer for Hybrid Electric Vehicle Lithium Battery (하이브리드 자동차용 리튬배터리의 충전량, 용량감퇴, 저항감퇴 예측을 위한 슬라이딩 모드 관측기 설계)

  • Kim, Il-Song;Lhee, Chin-Gook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.839-844
    • /
    • 2008
  • A novel state of health estimation method for hybrid electric vehicle lithium battery using sliding mode observer has been presented. A simple R-C circuit method has been used for the lithium battery modeling for the reduced calculation time and system resources due to the simple matrix operations. The modeling errors of simple model are compensated by the sliding mode observer. The design methodology for state of health estimation using dual sliding mode observer has been presented in step by step. The structure of the proposed system is simple and easy to implement, but it shows robust control property against modeling errors and temperature variations. The convergence of proposed observer system has been proved by the Lyapunov inequality equation and the performance of system has been verified by the sequence of urban dynamometer driving schedule test. The test results show the proposed observer system has superior tracking performance with reduced calculation time under the real driving environments.

Computational Study on Aeroacoustics of an Elastic Cantilevered Trailing-Edge (탄성 날개 끝단의 공력 소음에 관한 전산해석 연구)

  • Hwang Bon Chang;Moon Young June
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.159-168
    • /
    • 2005
  • Noise generated by the blunt trailing edge of lifting surfaces is investigated in this study using fluid structure interaction theory. First, through the eddy modeling, noise generation doe to the flow instability on the rigid trailing edge is surveyed. Then the behavior of elastic cantileverd beam is investigated. Parametric study based on various material properties is employed to analyze the motion of the beam. Moreover, each eigenmode approach of cantilevered beam is used to find when flow induced vibration is resonant. To analyze elastic behavior of cantilever beam efficiently, moving grid generation technique based on non-conservative form of Navier-Stokes equation is used. Equation of the motion associated with the cantilever beam is discretized by the Galerkin procedure with forced vibration. As a consequence, behavior of the elastic cantilevered beam is stable when the first mode natural frequency of the material is relatively higher than that of flow induced pressure fluctuation.

  • PDF

An absolute displacement approach for modeling of sliding structures

  • Krishnamoorthy, A.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.6
    • /
    • pp.659-671
    • /
    • 2008
  • A procedure to analyse the space frame structure fixed at base as well as resting on sliding bearing using total or absolute displacement in dynamic equation is developed. In the present method, the effect of ground acceleration is not considered as equivalent force. Instead, the ground acceleration is considered as a known value in the acceleration vector at degree of freedom corresponding to base of the structure when the structure is in non-sliding phase. When the structure is in sliding phase, only a force equal to the maximum frictional resistance is applied at base. Also, in this method, the stiffness matrix, mass matrix and the damping matrix will not change when the structure enters from one phase to another. The results obtained from the present method using absolute displacement approach are compared with the results obtained from the analysis of structure using relative displacement approach. The applicability of the analysis is also demonstrated to obtain the response of the structure resting on sliding bearing with restoring force device.

Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure

  • Mehar, Kulmani;Panda, Subrata Kumar
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.181-190
    • /
    • 2019
  • The thermal buckling temperature values of the graded carbon nanotube reinforced composite shell structure is explored using higher-order mid-plane kinematics and multiscale constituent modeling under two different thermal fields. The critical values of buckling temperature including the effect of in-plane thermal loading are computed numerically by minimizing the final energy expression through a linear isoparametric finite element technique. The governing equation of the multiscale nanocomposite is derived via the variational principle including the geometrical distortion through Green-Lagrange strain. Additionally, the model includes different grading patterns of nanotube through the panel thickness to improve the structural strength. The reliability and accuracy of the developed finite element model are varified by comparison and convergence studies. Finally, the applicability of present developed model was highlight by enlighten several numerical examples for various type shell geometries and design parameters.

An Analysis of Structural Relationships among Financial Indicators of Hospitals in Korea: Applying Structural Equation Modeling(SEM) (병원 재무비율 지표들 간의 구조적인 관계 분석)

  • Jung, Min-Soo;Lee, Keon-Hyung;Choi, Man-Kyu
    • Health Policy and Management
    • /
    • v.18 no.2
    • /
    • pp.19-38
    • /
    • 2008
  • Financial ratios are key indicators of an organization's financial and business conditions. Among various financial indicators, profitability, financial structure, financial activity and liquidity ratios are frequently used and analyzed. Using the structural equation modeling(SEM) technique, this study examines the structural causal relationships among key financial indicators. Data for this study are taken from complete financial statements from 142 hospitals that passed the standardization audit undertaken by the Korean Hospital Association from 1998 to 2001 for the purpose of accrediting teaching hospitals. In order to improve comparability, ratio values are standardized using the Blom's normal distribution. The final model of the SEM has four latent constructs: financial activity(total asset turnover, fixed asset turnover), liquidity(current ratio, quick ratio, collection period), financial structure(total debt to equity, long-term debt to equity, fixed assets to fund balance), and profitability(return on assets, normal profit to total assets, operating margin to gross revenue, normal profit to gross revenue). While examining several model fit indices(Chi-square (df) = 178.661 (40), likelihood ratio=4.467, RMR=.11, GFI=.849, RMSEA=.157), the final SEM we employed shows a relatively good fit. After examining the path coefficient of the constructs, the financial structure of the hospital affects the hospital's profitability in a statistically significant way. A hospital which utilizes its liabilities, more specifically fixed liabilities, and makes a stable investment decision for fixed assets was found to have a higher profitability than other hospitals. Then, the standard path coefficients were examined to directly compare the influence of variables. It was found that there were no statistically significant path coefficients among constructs. When it comes to variables, however, statistically significant relationships were found. between. financial activity and. fixed. asset turnover, and between profitability and normal profit to gross revenue. These results show that the observed variables of fixed asset turnover and normal profit to gross revenue can be used as indicators representing financial activity and profitability.