• Title/Summary/Keyword: structure analysis method

Search Result 9,225, Processing Time 0.041 seconds

A Study on the Optimal Shape Design of 2-D Structures (2차원 구조물의 최적형상설계에 관한 연구)

  • 김홍건;양성모;노홍길;나석찬;유기현;조남익
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.9-16
    • /
    • 2003
  • A strategy of the optimal shape design with FEA(Finite Element Analysis) for 2-D structure is proposed by comparing subproblem approximation method with first order approximation method. A cantilever beam with two different loading conditions, a concentrated load and an evenly distribute load, and truss structure with a concentrated loading condition are implemented to optimize the shape. It gives a good design strategy on the optimal truss structure as well as the optimal cantilever beam shape. It is found that the convergence is quickly finished with the iteration number below ten. Optimized shapes of cantilever beam and truss structure are shown with stress contour plot by the results of the subproblem approximation method and the first order approximation methd.

Reliability-Based Optimal Design of Pillar Sections Considering Fundamental Vibration Modes of Vehicle Body Structure (차체 기본 진동 모드를 고려한 필러 단면의 신뢰성 최적설계)

  • Lee Sang Beom;Yim Hong Jae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.107-113
    • /
    • 2004
  • This paper presents the pillar section optimization technique considering the reliability of the vehicle body structure consisted of complicated thin-walled panels. The response surface method is utilized to obtain the response surface models that describe the approximate performance functions representing the system characteristics on the section properties of the pillar and on the mass and the natural frequencies of the vehicle B.I.W. The reliability-based design optimization on the pillar sections Is performed and compared with the conventional deterministic optimization. The FORM is applied for the reliability analysis of the vehicle body structure. The developed optimization system is applied to the pillar section design considering the fundamental natural frequencies of passenger car body structure. By applying the proposed RBDO technique, it can be possible to optimize the pillar sections considering the reliability that engineers require.

The Design Eccentricity for Torsionally Unbalanced Structure (비틀림 거동을 하는 구조물의 설계 편심)

  • 조소훈;이명규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.5
    • /
    • pp.63-72
    • /
    • 2001
  • In this paper, to satisfy the safety and economy immediately, we assume the center of lateral load in case the dynamic motion of the torsionally unbalanced structure is transformed into the static lateral load using modal analysis and proposes a method to control the design eccentricity in order to make the center of lateral load coincide with the center of strength. And when the structure is designed by proposed method, it is shown that the structure designed by proposed method does not demand excessive additional ductility in comparison with the structure designed by provisions of other seismic building code.

  • PDF

Nonlinear Earthquake Response Analysis of 2-D Underground Structures with Soil-Structure Interaction Including Separation and Sliding at Interface (지반-구조물 상호작용계의 경계면에서 미끄러짐과 분리현상을 고려한 이차원 지하구조물의 비선형 지진응답해석)

  • 최준성;이종세;김재민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.174-181
    • /
    • 2002
  • The paper presents an effective analytical method for SSI systems which can have separation or sliding at the soil-structure interface. The method is based on a hybrid approach which combines a linear SSI code KIESSI-2D in frequency domain with a commercial finite element package ANSYS to obtain nonlinear dynamic responses in time domain. The method is applied to a 2-D underground box structure which experiences separation and sliding at the soil-structure interface. Material nonlinearity of the concrete structure is also included in the analysis. Effects of the interface conditions are examined and some critical factors affecting the seismic performance of underground structures are identified.

  • PDF

Thermal Crack Control of Wall Elements in LiNAC Structure (LiNAC실 벽체 구조물의 온도 균열 제어)

  • Son, Myong-Sik;Do, Yool-Ho;Na, Woon;Park, Chan-Kyu;Lee, Hoi-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.413-416
    • /
    • 2006
  • This paper presents the analytical results on the heat of hydration and induced thermal cracking of the wall elements in LiNAC that is a radioactive shield concrete structure. This wall elements measuring 1.2 m in thickness and 32 m in length tend to exhibit thermal cracking due to heat of hydration and high constraint effects caused by slab element located in the lower part of structure. In this analysis, four different construction stages were considered to find out the most effective concrete casting method in terms of thermal stress. Among the construction methods adopted in this analysis, the method of installation of construction connection measuring 1.2 m at the both side of wall elements was very effective way to control the thermal stress, resulting in increase thermal cracking index of wall elements in LiNAC structure. Finally, the wall elements in LiNAC structure was cast successfully according to the proposed construction method.

  • PDF

Technical Papers : Optimization Method of Structure by Using Coupled Load Analysis (기술논문 : 연성하중해석을 이용한 구조 최적화 기법 연구)

  • Lee,Yeong-Sin;Kim,In-Geol;Hwang,Do-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.132-138
    • /
    • 2002
  • Of srategic importance nowdays is the development of high performance spacecraft bus. In this study, optimization for spacecraft structure is performed under the framework of coupled load analysis which is a branch of component mode synthesis with constrained mode and modal transient analysis. unlike the traditional method which uses the quasi-static table supplied by launch vehicle contractor, the present method adots the load results of previous coupled load analysis. It if shown that the proposed method can serve as a effective tool for the optimization spacecraft structure in the early stage of design and weight reduction by numerical example.

Time domain earthquake response analysis method for 2-D soil-structure interaction systems

  • Kim, Doo-Kie;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.717-733
    • /
    • 2003
  • A time domain method is presented for soil-structure interaction analysis under seismic excitations. It is based on the finite element formulation incorporating infinite elements for the far field soil region. Equivalent earthquake input forces are calculated based on the free field responses along the interface between the near and far field soil regions utilizing the fixed exterior boundary method in the frequency domain. Then, the input forces are transformed into the time domain by using inverse Fourier transform. The dynamic stiffness matrices of the far field soil region formulated using the analytical frequency-dependent infinite elements in the frequency domain can be easily transformed into the corresponding matrices in the time domain. Hence, the response can be analytically computed in the time domain. A recursive procedure is proposed to compute the interaction forces along the interface and the responses of the soil-structure system in the time domain. Earthquake response analyses have been carried out on a multi-layered half-space and a tunnel embedded in a layered half-space with the assumption of the linearity of the near and far field soil region, and results are compared with those obtained by the conventional method in the frequency domain.

Natural Frequency Analysis of Arch by Galerkin's Method (갤러킨법을 이용한 아치의 고유진동해석)

  • Jung, Chan-Woo;Seok, Keun-Yung;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.4
    • /
    • pp.55-61
    • /
    • 2007
  • Recently, with the development of computer, FEM has became the most frequently used numerical analysis method. FEM shows great ability in structures analysis, however, Galerkin's Method is more useful in grasping influence or the tendency of parameter which forms the structure. This paper perform the eigenvalue analysis using Galerkin's Method which is advantageous in grasping the influence and the tendency of parameter which forms the structure and study on the influence of parameter that forms arch on natural frequency response.

  • PDF

Dynamic Analysis of a Humanoid Robot Using F.E.M Analysis Program (F.E.M 해석 프로그램을 이용한 휴머노이드 로봇의 동역학 해석)

  • Cho, Hyoung-Rae;Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.591-593
    • /
    • 2005
  • This paper presents the dynamic analysis of a humanoid robot using Nastran that is one of FEM analysis program. Generally, computer program based on the Lagrange-Euler method or Newton-Euler method was used for dynamic analysis of a robot. The Lagrange-Euler method requires much calculation performance and it is also hard to apply to complex structure, and the Newton-Euler method limits accurate modeling and calculation for closed structure like a humanoid robot. In this paper, mechanical and structural data are obtained from the Nastran. It is possible for Nastran to make model similar to real system and can apply a physical properties and laws to model. So, accurate simulation is possible. From this result, accurate data is gained by Nastran. Furthermore, this method is shown to be a useful method that guarantees accuracy for trajectory planning.

  • PDF

A Dynamic Analysis and Evaluation of a Building Structure due to Tunnel Blast by using Semi-Empirica Method (준경험적 방법을 이용한 터널발파 작업시 인접구조물의 동적해석 및 진동영향성 평가)

  • Son, Sung-Wan;Ru, Kuk-Hyun;Chun, Jong-Kun;Nam, Young-Sik;Kim, Dong-Gi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.772-775
    • /
    • 2005
  • Most engineers, related to soil and civil dynamic field, have been interested in the direct dynamic design of building transmitted from soil and rock to structure due to blasting. However it is not easy to estimate the dynamic response of structures due to blasting by using analytical method because of difficulties of soil modeling, prediction of excitation force and so on. In this paper, dynamic analysis have been performed to predict vibration level and evaluate dynamic safety of structure adjacent to tunnel blast and the semi empirical method, which is based on vibration measurement data, has been employed to consider blast vibration characteristics.

  • PDF