• 제목/요약/키워드: structural vulnerability

검색결과 249건 처리시간 0.025초

Seismic performance evaluation of RC bearing wall structures

  • Rashedi, Seyed Hadi;Rahai, Alireza;Tehrani, Payam
    • Computers and Concrete
    • /
    • 제30권2호
    • /
    • pp.113-126
    • /
    • 2022
  • Reinforced concrete bearing walls (RCBWs) are one of the most applicable structural systems. Therefore, vulnerability analysis and rehabilitation of the RCBW system are of great importance. In the present study, in order to the more precise investigation of the performance of this structural resistant system, pushover and nonlinear time history analyses based on several assumptions drawing upon experimental research were performed on several models with different stories. To validate the nonlinear analysis method, the analytical and experimental results are compared. Vulnerability evaluation was carried out on two seismic hazard levels and three performance levels. Eventually, the need for seismic rehabilitation with the basic safety objective (BSO) was investigated. The obtained results showed that the studied structures satisfied the BSO of the seismic rehabilitation guidelines. Consequently, according to the results of analyses and the desired performance, this structural system, despite its high structural weight and rigid connections and low flexibility, has integrated performance, and it can be a good option for earthquake-resistant constructions.

Static vulnerability of existing R.C. buildings in Italy: a case study

  • Maria, Polese;Gerardo M., Verderame;Gaetano, Manfredi
    • Structural Engineering and Mechanics
    • /
    • 제39권4호
    • /
    • pp.599-620
    • /
    • 2011
  • The investigation on possible causes of failures related to documented collapses is a complicated issue, primarily due to the scarcity and inadequacy of information available. Although several studies have tried to understand which are the inherent structural deficiencies or circumstances associated to failure of the main structural elements in a reinforced concrete frame, to the authors knowledge a uniform approach for the evaluation building static vulnerability, does not exist yet. This paper investigates, by means of a detailed case study, the potential failure mechanisms of an existing reinforced concrete building. The linear elastic analysis for the three-dimensional building model gives an insight on the working conditions of the structural elements, demonstrating the relevance of a number of structural faults that could sensibly lower the structure's safety margin. Next, the building's bearing capacity is studied by means of parametric nonlinear analysis performed at the element's level. It is seen that, depending on material properties, concrete strength and steel yield stress, the failure hierarchy could be dominated by either brittle or ductile mechanisms.

Evaluation of damage probability matrices from observational seismic damage data

  • Eleftheriadou, Anastasia K.;Karabinis, Athanasios I.
    • Earthquakes and Structures
    • /
    • 제4권3호
    • /
    • pp.299-324
    • /
    • 2013
  • The current research focuses on the seismic vulnerability assessment of typical Southern Europe buildings, based on processing of a large set of observational damage data. The presented study constitutes a sequel of a previous research. The damage statistics have been enriched and a wider damage database (178578 buildings) is created compared to the one of the first presented paper (73468 buildings) with Damage Probability Matrices (DPMs) after the elaboration of the results from post-earthquake surveys carried out in the area struck by the 7-9-1999 near field Athens earthquake. The dataset comprises buildings which developed damage in several degree, type and extent. Two different parameters are estimated for the description of the seismic demand. After the classification of damaged buildings into structural types they are further categorized according to the level of damage and macroseismic intensity. The relative and the cumulative frequencies of the different damage states, for each structural type and each intensity level, are computed and presented, in terms of damage ratio. Damage Probability Matrices (DPMs) are obtained for typical structural types and they are compared to existing matrices derived from regions with similar building stock and soil conditions. A procedure is presented for the classification of those buildings which initially could not be discriminated into structural types due to restricted information and hence they had been disregarded. New proportional DPMs are developed and a correlation analysis is fulfilled with the existing vulnerability relations.

Seismic vulnerability assessment of RC buildings according to the 2007 and 2018 Turkish seismic codes

  • Yon, Burak
    • Earthquakes and Structures
    • /
    • 제18권6호
    • /
    • pp.709-718
    • /
    • 2020
  • Fragility curves are useful tools to estimate the damage probability of buildings owing to seismic actions. The purpose of this study is to investigate seismic vulnerability of reinforced concrete (RC) buildings, according to the 2007 and 2018 Turkish Seismic Codes, using fragility curves. For the numerical analyses, typical five- and seven-storey RC buildings were selected and incremental dynamic analyses (IDA) were performed. To complete the IDAs, eleven earthquake acceleration records multiplied by various scaling factors from 0.2g to 0.8g were used. To predict nonlinearity, a distributed hinge model that involves material and geometric nonlinearity of the structural members was used. Damages to confined concrete and reinforcement bar of structural members were obtained by considering the unit deformation demands of the 2007 Turkish Seismic Code (TSC-2007) and the 2018 Turkey Building Earthquake Code (TBEC-2018). Vulnerability evaluation of these buildings was performed using fragility curves based on the results of incremental dynamic analyses. Fragility curves were generated in terms of damage levels occurring in confined concrete and reinforcement bar of structural members with a lognormal distribution assumption. The fragility curves show that the probability of damage occurring is more according to TBEC-2018 than according to TSC-2007 for selected buildings.

환경시설물 대상 홍수취약성 평가지표 개발에 관한 연구 - 하수처리장을 중심으로 - (A Study on Development of Flood Vulnerability Evaluation Indicators for Sewage Treatment Plant)

  • 노재덕;한지희;이창희
    • 융합정보논문지
    • /
    • 제10권12호
    • /
    • pp.110-118
    • /
    • 2020
  • 본 연구에서는 환경시설을 대상으로 침수피해에 대비한 재해 예방능력을 강화하고자 정량적인 부분뿐만 아니라 정성적인 부분을 고려한 홍수취약성 평가지표를 개발하고자 하였다. 이를 위해 환경시설의 침수에 취약한 시설물을 분석하고 구조적, 비구조적인 평가지표로 구분하여 개발하였다. 구조적 평가지표는 환경시설에 취약한 측면을 시설의 유형적인 측면에 대해 11개의 평가지표를 제시하였으며, 비구조적 평가지표는 내부인자와 외부인자로 구분하여 시설의 운영·상태 등 무형적인 측면에 대해 내부인자 8개와 외부인자 6개로 제시하였다. 본 연구에서 제시한 홍수취약성 평가지표는 기존 환경시설물의 침수피해 대비 홍수취약성에 대해 평가할 수 있도록 함으로써 홍수에 대한 대비할 수 있을 것으로 기대된다.

Vulnerability of roofing components to wind loads

  • Jayasinghe, N.C.;Ginger, J.D.
    • Wind and Structures
    • /
    • 제14권4호
    • /
    • pp.321-335
    • /
    • 2011
  • The vulnerability of roofing components of contemporary houses built in cyclonic regions of Australia is assessed for increasing wind speeds. The wind loads and the component strengths are treated as random variables with their probability distributions derived from available data, testing, structural analysis and experience. Design details including types of structural components of houses are obtained from surveying houses and analyzing engineering drawings. Wind load statistics on different areas of the roof are obtained by wind tunnel model studies and compared with Australian/New Zealand Standard, AS/NZS 1170.2. Reliability methods are used for calculating the vulnerability of roofing components independently over the roof. Cladding and batten fixings near the windward gable edge are found to experience larger negative pressures than prescribed in AS/NZS 1170.2, and are most vulnerable to failure.

Effects of curvature radius on vulnerability of curved bridges subjected to near and far-field strong ground motions

  • Naseri, Ali;Roshan, Alireza MirzaGoltabar;Pahlavan, Hossein;Amiri, Gholamreza Ghodrati
    • Structural Monitoring and Maintenance
    • /
    • 제7권4호
    • /
    • pp.367-392
    • /
    • 2020
  • The specific characteristics of near-field earthquake records can lead to different dynamic responses of bridges compared to far-field records. However, the effect of near-field strong ground motion has often been neglected in the seismic performance assessment of the bridges. Furthermore, damage to horizontally curved multi-frame RC box-girder bridges in the past earthquakes has intensified the potential of seismic vulnerability of these structures due to their distinctive dynamic behavior. Based on the nonlinear time history analyses in OpenSEES, this article, assesses the effects of near-field versus far-field earthquakes on the seismic performance of horizontally curved multi-frame RC box-girder bridges by accounting the vertical component of the earthquake records. Analytical seismic fragility curves have been derived thru considering uncertainties in the earthquake records, material and geometric properties of bridges. The findings indicate that near-field effects reasonably increase the seismic vulnerability in this bridge sub-class. The results pave the way for future regional risk assessments regarding the importance of either including or excluding near-field effects on the seismic performance of horizontally curved bridges.

Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading

  • Abedini, Masoud;Zhang, Chunwei
    • Structural Engineering and Mechanics
    • /
    • 제77권4호
    • /
    • pp.441-461
    • /
    • 2021
  • Reinforced concrete (RC) columns are crucial in building structures and they are of higher vulnerability to terrorist threat than any other structural elements. Thus it is of great interest and necessity to achieve a comprehensive understanding of the possible responses of RC columns when exposed to high intensive blast loads. The primary objective of this study is to derive analytical formulas to assess vulnerability of RC columns using an advanced numerical modelling approach. This investigation is necessary as the effect of blast loads would be minimal to the RC structure if the explosive charge is located at the safe standoff distance from the main columns in the building and therefore minimizes the chance of disastrous collapse of the RC columns. In the current research, finite element model is developed for RC columns using LS-DYNA program that includes a comprehensive discussion of the material models, element formulation, boundary condition and loading methods. Numerical model is validated to aid in the study of RC column testing against the explosion field test results. Residual capacity of RC column is selected as damage criteria. Intensive investigations using Arbitrary Lagrangian Eulerian (ALE) methodology are then implemented to evaluate the influence of scaled distance, column dimension, concrete and steel reinforcement properties and axial load index on the vulnerability of RC columns. The generated empirical formulae can be used by the designers to predict a damage degree of new column design when consider explosive loads. With an extensive knowledge on the vulnerability assessment of RC structures under blast explosion, advancement to the convention design of structural elements can be achieved to improve the column survivability, while reducing the lethality of explosive attack and in turn providing a safer environment for the public.

A dynamic reliability approach to seismic vulnerability analysis of earth dams

  • Hu, Hongqiang;Huang, Yu
    • Geomechanics and Engineering
    • /
    • 제18권6호
    • /
    • pp.661-668
    • /
    • 2019
  • Seismic vulnerability assessment is a useful tool for rational safety analysis and planning of large and complex structural systems; it can deal with the effects of uncertainties on the performance of significant structural systems. In this study, an efficient dynamic reliability approach, probability density evolution methodology (PDEM), is proposed for seismic vulnerability analysis of earth dams. The PDEM provides the failure probability of different limit states for various levels of ground motion intensity as well as the mean value, standard deviation and probability density function of the performance metric of the earth dam. Combining the seismic reliability with three different performance levels related to the displacement of the earth dam, the seismic fragility curves are constructed without them being limited to a specific functional form. Furthermore, considering the seismic fragility analysis is a significant procedure in the seismic probabilistic risk assessment of structures, the seismic vulnerability results obtained by the dynamic reliability approach are combined with the results of probabilistic seismic hazard and seismic loss analysis to present and address the PDEM-based seismic probabilistic risk assessment framework by a simulated case study of an earth dam.