• 제목/요약/키워드: structural understanding

검색결과 1,339건 처리시간 0.033초

Understanding Organizational Characteristics in UK SMEs; The Factors and R&D

  • Hwang, In-Pyo
    • 기술혁신연구
    • /
    • 제7권2호
    • /
    • pp.71-100
    • /
    • 1999
  • This article is concerned with the importance of organisation management and its characteristics in business performance in SMEs, and tested by four main aspects: managerial strategies, organisational structure, leader behaviour, and R&D activities. These relationships were tested with questionnaire data from a random sample of 87 firms. Results from simple statistics on each issue showed that SMEs have focused on the corporate growth and management goals, the democratic leadership, decentralisation in organisational structure, and the technology development plans. Results from correlation analyses not only found significant relationships between managerial strategy and R&D activities but also showed differences in R&D activities according to structural status or leadership style, respectively.

  • PDF

유리고분자의 용매전달특성 및 그 해석 (Solvent Transport Characteristics of Glassy Polymers and its Analysis)

  • 김덕준
    • 멤브레인
    • /
    • 제8권1호
    • /
    • pp.11-21
    • /
    • 1998
  • The study on penetrant transport in glassy polymers has been actively pursued for decades because of its growing significance in polymer processing and related applications such as not only membranes, but corrosion protective coatings, microlithography, microelectronic fabrication, etc. In membranes application of polymeric materials, successful utilization requires understanding of how solvents penetrate, swell, and sometimes dissolve polymeric materials under various environmental conditions, as their permselecdve performance is significantly affected by it. The expose of polymer membranes to solvents may result in the structural failure due to mechanical softening, embrittlement or crazing.

  • PDF

Docking of Retinol into the 3D Structural Model of Human TCTP Constructed by Homology Modeling

  • Cho, In-Hee;Kim, Choon-Mi
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.154.1-154.1
    • /
    • 2003
  • TCTP is presented to have a retinol binding protein (RBP)-like structure by domain search. Human cellular RBP (CRBP) plays a key role in the intercellular transfer of retinol. Modulation of its expression is known to contribute to tumor growth and progression via retinoid-mediated signaling. Changes in the expression of TCTP have also been reported to be associated with carcinogenesis. Therefore, the attempt to establish the interactive relationship between the human TCTP and CRBP with retinol will be helpful in further understanding the cell signaling of TCTP. (omitted)

  • PDF

An Exploratory Study on the Meaning of Visual Scaffolding in Teaching and Learning Contexts

  • PARK, Soyoung
    • Educational Technology International
    • /
    • 제18권2호
    • /
    • pp.215-247
    • /
    • 2017
  • This study aims to conduct a literature review on visual scaffolding. Visual scaffolding, as a support for learning, employs various forms of visual objects which can be either content-independent or content-dependent and the types of which would be abstract-verbal, concrete-verbal, concrete-visual, or abstract visual. The effectiveness of visual scaffolding can be argued in the following three aspects: 1) explicit representation of information and emphasis of critical features in effective and efficient manner, 2) supplement of additional information, 3) structural understanding with decrease in cognitive load. The limitations of the study and the suggestions for future study are discussed.

Biologically inspired soft computing methods in structural mechanics and engineering

  • Ghaboussi, Jamshid
    • Structural Engineering and Mechanics
    • /
    • 제11권5호
    • /
    • pp.485-502
    • /
    • 2001
  • Modem soft computing methods, such as neural networks, evolutionary models and fuzzy logic, are mainly inspired by the problem solving strategies the biological systems use in nature. As such, the soft computing methods are fundamentally different from the conventional engineering problem solving methods, which are based on mathematics. In the author's opinion, these fundamental differences are the key to the full understanding of the soft computing methods and in the realization of their full potential in engineering applications. The main theme of this paper is to discuss the fundamental differences between the soft computing methods and the mathematically based conventional methods in engineering problems, and to explore the potential of soft computing methods in new ways of formulating and solving the otherwise intractable engineering problems. Inverse problems are identified as a class of particularly difficult engineering problems, and the special capabilities of the soft computing methods in inverse problems are discussed. Soft computing methods are especially suited for engineering design, which can be considered as a special class of inverse problems. Several examples from the research work of the author and his co-workers are presented and discussed to illustrate the main points raised in this paper.

Comprehensive evaluation of structural geometrical nonlinear solution techniques Part I: Formulation and characteristics of the methods

  • Rezaiee-Pajand, M.;Ghalishooyan, M.;Salehi-Ahmadabad, M.
    • Structural Engineering and Mechanics
    • /
    • 제48권6호
    • /
    • pp.849-878
    • /
    • 2013
  • This paper consists of two parts, which broadly examines solution techniques abilities for the structures with geometrical nonlinear behavior. In part I of the article, formulations of several well-known approaches will be presented. These solution strategies include different groups, such as: residual load minimization, normal plane, updated normal plane, cylindrical arc length, work control, residual displacement minimization, generalized displacement control, modified normal flow, and three-parameter ellipsoidal, hyperbolic, and polynomial schemes. For better understanding and easier application of the solution techniques, a consistent mathematical notation is employed in all formulations for correction and predictor steps. Moreover, other features of these approaches and their algorithms will be investigated. Common methods of determining the amount and sign of load factor increment in the predictor step and choosing the correct root in predictor and corrector step will be reviewed. The way that these features are determined is very important for tracing of the structural equilibrium path. In the second part of article, robustness and efficiency of the solution schemes will be comprehensively evaluated by performing numerical analyses.

유한 요소법에 의한 콘크리트 포장도로의 구조해석 프로그램개발 (Development of Finite Element Analysis Program for the Concrete Pavement)

  • 조병완
    • 전산구조공학
    • /
    • 제3권2호
    • /
    • pp.89-95
    • /
    • 1990
  • 근세 사회의 눈부신 산업발전과 함께 늘어나는 빈번한 차량 하중을 좀더 합리적으로 충분히 노반에 분산시키기 위하여 콘크리트포장이 근래 널리 이용 되어져 왔다. 아스팔트계 포장의 표층이 휨응력에 저항하지 못하고 하중을 받으면 표층의 변형이 그대로 노반에 전달되어 일체로되어 변형을 하지만 콘크리트 포장은 콘크리트 슬래브가 구조체로서의 높은 휨강도와 큰 탄성계수에 의해 휨응력 및 전단력에도 저항을 하게 되므로 차량하중뿐만 아니라 주기적인 온도 변화에 의한 팽창, 수축, 솟음, 노상 노반의 체적변화등에 의한 복잡한 응력을 받게된다. 이러한 콘크리트 포장구조의 제응력 현상을 구조 역학적인 입장에서 좀더 정확하게 합리적으로 해석을 하기위해 유한요소법을 이용한 컴퓨터 구조해석 프로그램을 개발하여 모든 하중 조건하에서의 슬래브 처짐과 응력을 계산하고 예상하므로써 콘크리트 포장구조의 파괴현상을 연구하고 합리적인 설계자료를 제공하고자 한다.

  • PDF

Study on the Causes of Premature Cracking of Epoxy Coatings for Ship's Ballast Tanks

  • Song, Eun Ha;Lee, Ho Il;Chung, Mong Kyu;Lee, Seong Kyun;Baek, Kwang Ki
    • Corrosion Science and Technology
    • /
    • 제5권2호
    • /
    • pp.69-76
    • /
    • 2006
  • Premature cracking of the epoxy coatings applied on ship's ballast tanks(BT) can lead to damage of ship's hulls. To avoid this, it's important to have clear understanding of the underlying mechanism and primary factors of the coating crack. In this study, the efforts were made to clarify the integrated effects of main factors, i.e., initial coating shrinkage, thermally induced strain, steel-structural strain and the intrinsic coating flexibility at the initial and after aging, to the early cracking phenomena of epoxy coating in the ship's ballast tank. The coating crack is caused by combination of thermal stress, structural stress, and internal stresses which is closely related to chemical structures of the coatings. On the other hand, thermal stresses and dimensional stabilities would rarely play a major role in coating crack for ballast tank coatings with rather large flexibility. Crack resistance of the coatings at early stages can be estimated roughly by measuring internal stress, FT-IR and $T_g$ value of the coatings. A new screening test method was also proposed in this study, which can be possibly related to the long-term resistance of epoxy-based paints to cracking.

A review on sensors and systems in structural health monitoring: current issues and challenges

  • Hannan, Mahammad A.;Hassan, Kamrul;Jern, Ker Pin
    • Smart Structures and Systems
    • /
    • 제22권5호
    • /
    • pp.509-525
    • /
    • 2018
  • Sensors and systems in Civionics technology play an important role for continuously facilitating real-time structure monitoring systems by detecting and locating damage to or degradation of structures. An advanced materials, design processes, long-term sensing ability of sensors, electromagnetic interference, sensor placement techniques, data acquisition and computation, temperature, harsh environments, and energy consumption are important issues related to sensors for structural health monitoring (SHM). This paper provides a comprehensive survey of various sensor technologies, sensor classes and sensor networks in Civionics research for existing SHM systems. The detailed classification of sensor categories, applications, networking features, ranges, sizes and energy consumptions are investigated, summarized, and tabulated along with corresponding key references. The current challenges facing typical sensors in Civionics research are illustrated with a brief discussion on the progress of SHM in future applications. The purpose of this review is to discuss all the types of sensors and systems used in SHM research to provide a sufficient background on the challenges and problems in optimizing design techniques and understanding infrastructure performance, behavior and current condition. It is observed that the most important factors determining the quality of sensors and systems and their reliability are the long-term sensing ability, data rate, types of processors, size, power consumption, operation frequency, etc. This review will hopefully lead to increased efforts toward the development of low-powered, highly efficient, high data rate, reliable sensors and systems for SHM.

Advanced neuroimaging techniques for evaluating pediatric epilepsy

  • Lee, Yun Jeong
    • Clinical and Experimental Pediatrics
    • /
    • 제63권3호
    • /
    • pp.88-95
    • /
    • 2020
  • Accurate localization of the seizure onset zone is important for better seizure outcomes and preventing deficits following epilepsy surgery. Recent advances in neuroimaging techniques have increased our understanding of the underlying etiology and improved our ability to noninvasively identify the seizure onset zone. Using epilepsy-specific magnetic resonance imaging (MRI) protocols, structural MRI allows better detection of the seizure onset zone, particularly when it is interpreted by experienced neuroradiologists. Ultra-high-field imaging and postprocessing analysis with automated machine learning algorithms can detect subtle structural abnormalities in MRI-negative patients. Tractography derived from diffusion tensor imaging can delineate white matter connections associated with epilepsy or eloquent function, thus, preventing deficits after epilepsy surgery. Arterial spin-labeling perfusion MRI, simultaneous electroencephalography (EEG)-functional MRI (fMRI), and magnetoencephalography (MEG) are noinvasive imaging modalities that can be used to localize the epileptogenic foci and assist in planning epilepsy surgery with positron emission tomography, ictal single-photon emission computed tomography, and intracranial EEG monitoring. MEG and fMRI can localize and lateralize the area of the cortex that is essential for language, motor, and memory function and identify its relationship with planned surgical resection sites to reduce the risk of neurological impairments. These advanced structural and functional imaging modalities can be combined with postprocessing methods to better understand the epileptic network and obtain valuable clinical information for predicting long-term outcomes in pediatric epilepsy.