• 제목/요약/키워드: structural test

검색결과 7,809건 처리시간 0.031초

Structural Test and Evaluation of Composite Blade for Wind Turbine System

  • Ahn, Sungjin;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • 제3권1호
    • /
    • pp.17-20
    • /
    • 2016
  • In this work, a structural design on horizontal axis wind turbine blade using natural flax fiber composite is performed. The structural design results of flax/epoxy composite blade are compared with the design results of glass/epoxy composite blade. In order to evaluate the structural design of the composite blade, the structural analysis was performed by the finite element method. Through the structural analyses, it is confirmed that the designed blade using natural composite is acceptable for structural safety, blade tip deflection, structural stability, resonance possibility, and weight. Finally, structural test of manufactured blade was performed. Through the structural test, it is confirmed that the designed blade is acceptable.

항공기 소형 엔진 시험 장치의 구조 설계 및 해석 연구 (A Study on Structural Design and Analysis of Small Engine Test Equipment for Use in Aircraft)

  • 백경미;박현범
    • 항공우주시스템공학회지
    • /
    • 제12권1호
    • /
    • pp.42-46
    • /
    • 2018
  • 본 연구는 소형 엔진 추력 시험 장비에 대한 구조의 안전성 해석에 관한 연구이다. 본 연구에서 소형 엔진 시험 장치를 위한 철강 및 알루미늄 합금 적용 구조의 설계 및 해석을 수행하였다. 1차적으로 엔진 시험 장치의 구조 설계 요구 조건이 분석되었다. 구조 설계 이후 유한 요소 해석 기법을 활용하여 엔진 시험 장치의 구조 해석이 수행되었다. 적용 하중 조건에서 응력 및 변위 해석이 수행되었다. 최종 구조 해석을 통해 설계된 엔진 시험 장치 구조는 안전한 것으로 확인되었다.

4인승 선미익기 구조해석 (Structural Analysis for 4-Seater Canard Airplane)

  • 김성준;심재열
    • 항공우주기술
    • /
    • 제6권2호
    • /
    • pp.35-39
    • /
    • 2007
  • 본 논문에서는 4인승 선미익 항공기에 대한 구조해석 절차와 전기체 시험결과를 소개하였다. 전기체 유한요소모델 구축은 항공기 구조해석 시 중요한 업무이며 구조적 안전성에 직접적인 영향을 미치게 된다. 구축된 유한요소모델은 전기체 시험결과를 이용하여 정밀하게 보정된다. 구조해석 결과를 이용하여 5가지의 설계제한하중 시험조건과 11가지의 설계 극한하중 시험조건을 결정하였다. 소개된 절차를 이용하여 4인승 선미익 항공기의 구조적 안전성을 성공적으로 확보하였다.

  • PDF

석영 가열램프의 열 유속 특성 파악을 통한 고온 구조시험의 열 하중 설계에 관한 연구 (A Study on Heat Flux Characteristics of Tubular Quartz Lamp for Thermal Load Design of High Temperature Structural Test)

  • 김준혁
    • 한국군사과학기술학회지
    • /
    • 제25권4호
    • /
    • pp.355-363
    • /
    • 2022
  • Development of supersonic flying vehicle is one of the most latest issue in modern military technology. Specifically, structural integrity of supersonic flying vehicle can be verified by high temperature structural test. High temperature structural test is required to consider thermal load caused by aerodynamic heating while applying structural load simultaneously. Tubular quartz lamps are generally used to generate thermal load by emitting infrared radiation. In this study, modified heat flux model of tubular quartz lamp is proposed based on existing model. Parameters of the proposed model are optimized upon measured heat flux in three dimensions. Finally, thermal load of plate specimen is designed by the heat flux model. In conclusion, it is possible to predict heat flux applied on plate specimen and desired thermal load of high temperature structural test can be obtained.

헬리콥터용 축소 복합재료 힌지없는 허브 부품 제작 및 구조 시험 (Manufacture and Structural Test of the Small-scaled Composite Hingeless Hub Part for Helicopter)

  • 김덕관;홍단비;기영중;이욱;이명규
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.119-122
    • /
    • 2003
  • This report describes the procedure of detailed design and structural test for the composite flexure which is a part of the hingeless hub system. First, stacking sequence design for composite flexure was done, and structural analysis by using NASTRAN was made to verify structural stability and safety. Using FPS installed at KIMM, composite flexure was laid up and cured using a autoclave. Before rotor ground test, the basic structural tests such as a bench test, tensile strength test and shear strength test, for flexure, were accomplished. Through replacing existing metal hub part with new fabricated composite flexure, improvement of aeroelastic stability and weight reduction were achieved. This result will be applied to composite rotor system design fur helicopter.

  • PDF

철도차량 추진제어장치 성능시험을 위한 관성부하 시험설비의 구조안전성 및 동특성 평가 연구 (A study on structural integrity and dynamic characteristic of inertial load test equipment for performance test of railway vehicle propulsion control system)

  • 장형진;신광복;이상훈;이대봉
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1389-1394
    • /
    • 2010
  • This paper describes the evaluation of structural integrity and dynamic characteristic of inertial load test equipments for performance test of railway vehicle propulsion control system. The propulsion control system of railway vehicle has to be confirmed of safety and reliability prior to it's application. Therefore, inertial load test equipments were designed through theoretical equation for performance test of propulsion control system. The structural analysis of inertial load test equipments was conducted using Ansys v11.0 and it's dynamic characteristic was evaluated the designed using Adams. The results showed that the structural integrity of inertial load test equipment was satisfied with a safety factor of 10.2. Also, the structural stability was proved by maximum dynamic displacement of 0.82mm.

  • PDF

복합소재 교량 바닥판 '델타데크'의 구조적 특성과 현장적용 (Structural Characteristics and Field Application of 'Delta Deck' Composite Bridge)

  • 이성우;박신전;김병석;정규상
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.201-208
    • /
    • 2004
  • To substitute conventional reinforced-concrete bridge deck, glass composite precast bridge deck - Delta Deck/sup TM/, which possesses advantages of light weight, high strength, corrosion resistance and durability, is developed for the DB24 truck load. Pultruded composite bridge deck is designed and fabricated. To verify serviceability and structural safety, finite element analysis, structural testing such as flexural test, local fatigue test, flexural fatigue test and field tests are conducted. In this paper structural characteristics of developed deck and its field application in Korea is presented.

  • PDF

격벽화된 파이프 트러스 요소로 구성된 경량방음터널의 구조적 성능 평가 (Assessment of Structural Performance for a Lightweight Soundproof Tunnel Composed of Partitioned Pipe Truss Members)

  • 노명현;안동욱;주형중
    • 복합신소재구조학회 논문집
    • /
    • 제7권1호
    • /
    • pp.1-8
    • /
    • 2016
  • In this paper, the full-size structural performance test for a lightweight soundproof tunnel composed of partitioned pipe truss members is carried out to investigate the structural performance. In addition, a nonlinear structural analysis of the same finite element model as the full-size testing model is performed to compare the test result. The test and analysis results showed that the lightweight soundproof tunnel ensures the structural safety against wind loads, snow loads and load combinations. As a result, the full-size test and analysis results meet all the design load conditions, hence the proposed lightweight soundproof tunnel is ready for the field application.

범프 타입 포일 스러스트 베어링의 정하중 구조 강성 및 손실 계수 차이에 관한 실험적 연구 (On the Bearing-to-Bearing Variability in Experimentally Identified Structural Stiffnesses and Loss Factors of Bump-Type Foil Thrust Bearings under Static Loads)

  • 이성진;류근;정진희;류솔지
    • Tribology and Lubricants
    • /
    • 제36권6호
    • /
    • pp.332-341
    • /
    • 2020
  • High-speed turbomachinery implements gas foil bearings (GFBs) due to their distinctive advantages, such as high efficiency, lesser part count, and lower weight. This paper provides the test results of the static structural stiffnesses and loss factors of bump-type foil thrust bearings with increasing preload and bearing deflection. The focus of the current work is to experimentally quantify variability in structural stiffnesses and loss factors among the four test thrust bearings with identical design values and material of the bump and top foil geometries using the same (open-source) fabrication method. A simple test setup, using a rigidly mounted non-rotating shaft and thrust disk, measures the bearing bump deflections with increasing static loads on the test bearing. The inner and outer diameters of the test bearings are 41 mm and 81 mm, respectively. The loss factor, best-representing energy dissipation in the test bearings, is estimated from the area inside the local hysteresis loop of the load versus the bearing deflection curve. The measurements show that structural stiffnesses and loss factors of the test bearings significantly rely on applied preloads and bearing deflections. Local structural stiffnesses of the test bearings increase with applied preloads but decrease with bearing deflections. Changes of loss factors are less sensitive to applied preloads and bearing deflections compared to those of structural stiffnesses. Up to 35% variability in static load structural stiffnesses is found between bearings, while up to 30% variability in loss factors is found between bearings.