• Title/Summary/Keyword: structural reinforcements

Search Result 261, Processing Time 0.024 seconds

Parametric Crack and Flexural Strength Analyses of Concrete Slab For Railway Structures Using GFRP Rebar (GFRP 보강근을 적용한 교량용 콘크리트 도상슬래브의 균열 및 휨강도 변수 해석)

  • Choe, Hyeong-Bae;Lee, Sang-Youl
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.363-370
    • /
    • 2021
  • In this paper, we presented an optimized crack and flexural strength analysis of a glass-fiber reinforced polymer (GFRP) rebar, used as reinforcements for in-site railway concrete slabs. The insulation performance of a GFRP rebar has the advantage of avoiding the loss of signal current in an audio frequency (AF) track circuit. A full-scale experiment, and three-dimensional finite element simulation results were compared to validate our approaches. Parametric numerical results revealed that the diameters and arrangements of the GFRP rebar had a significant effect on the flexural strength and crack control performances of the concrete track slabs. The results of this study could serve as a benchmark for future guidelines in designing more efficient, and economical concrete slabs using the GFRP rebar.

The effect of fiber reinforcement on behavior of Concrete-Filled Steel Tube Section (CFST) under transverse impact: Experimentally and numerically

  • Yaman, Zeynep
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.173-189
    • /
    • 2022
  • This study presents an experimental and numerically study about the effects of fiber reinforcement ratio on the behavior of concrete-filled steel tubes (CFST) under dynamic impact loading. In literature have examined the behavior of GFRP and FRP wrapped strengthened CFST elements impact loads. However, since the direction of potential impact force isn't too exact, there is always the probability of not being matched the impact force of the area where the reinforced. Therefore, instead of the fiber textile wrapping method which strengthens only a particular area of CFST element, we used fiber-added concrete-filled elements which allow strengthening the whole element. Thus, the effect of fiber-addition in concrete on the behavior of CFST elements under impact loads was examined. To do so, six simply supported CFST beams were constructed with none fiber, 2% fiber and 10% fiber reinforcement ratio on the concrete part of the CFST beam. CFST beams were examined under two different impact loads (75 kg and 225 kg). The impactors hit the beam from a 2000 mm free fall during the experimental study. Numerical models of the specimens were created using ABAQUS finite element software and validated with experimental data. The obtained results such as; mid-span displacement, acceleration, failure modes and energies from experimental and numerical studies were compared and discussed. Furthermore, the Von Misses stress distribution of the CFST beams with different ratio of fiber reinforcements were investigated numerically. To sum up, there is an optimum amount limit of the fiber reinforcement on CFST beams. Up to this limit, the fiber reinforcement increases the structural performances of the beam, beyond that limit the fiber reinforcement decreases the performances of the CFST beam under transverse impact loadings.

Potential side-NSM strengthening approach to enhance the flexural performance of RC beams: Experimental, numerical and analytical investigations

  • Md. Akter, Hosen; Mohd Zamin, Jumaat;A.B.M. Saiful, Islam;Khalid Ahmed, Al Kaaf;Mahaad Issa, Shammas;Ibrahim Y., Hakeem;Mohammad Momeen, Ul Islam
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.179-195
    • /
    • 2023
  • The performance of reinforced concrete (RC) beam specimens strengthened using a newly proposed Side Near Surface Mounted (S-NSM) technology was investigated experimentally in this work. In addition, analytical and nonlinear finite element (FE) modeling was exploited to forecast the performance of RC members reinforced with S-NSM utilizing steel bars. Five (one control and four strengthened) RC beams were evaluated for flexural performance under static loading conditions employing four-point bending loads. Experimental variables comprise different S-NSM reinforcement ratios. The constitutive models were applied for simulating the non-linear material characteristics of used concrete, major, and strengthening reinforcements. The failure load and mode, yield and ultimate strengths, deflection, strain, cracking behavior as well as ductility of the beams were evaluated and discussed. To cope with the flexural behavior of the tested beams, a 3D non-linear FE model was simulated. In parametric investigations, the influence of S-NSM reinforcement, the efficacy of the S-NSM procedure, and the structural response ductility are examined. The experimental, numerical, and analytical outcomes show good agreement. The results revealed a significant increase in yield and ultimate strengths as well as improved failure modes.

Shear Strength Evaluation of Steel Fiber Reinforced Concrete Coupling Beams with Conventional Reinforcements Details (일반 철근 배근 상세를 갖는 강섬유 보강 콘크리트 연결보의 전단강도 평가)

  • Seong-Hwi Song;Dong-Hee Son;Baek-Il Bae;Chang-Sik Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.37-45
    • /
    • 2023
  • The purpose of this study is to prevent diagonal tension failure of existing conventional coupling beams, increase the shear strength of conventional coupling beams, and quantitatively evaluate the increase. Steel fibers can improve shear strength and partially change the failure mechanism, but this is the result of research on general RC beams and columns, and research on the shear strength enhancement of conventional coupling beams for steel fiber reinforced concrete is still lacking. Therefore, in order to confirm the increased shear strength caused by steel fiber and the resulting change in failure mechanism, three specimens were fabricated with the steel fiber volume fraction as a variable (0%, 1%, 2%) and repeated loading experiments were performed. As a result, the shear strength of the specimens reinforced with steel fibers (1%, 2%) increased as the shear resistance contribution of concrete increased after the maximum strength was developed compared to the specimens without it (0%).

Effects of Design Parameters on Structural Performance of Precast Piers with Bonded Prestressing Steels (부착 긴장재를 가진 조립식 교각 설계변수의 구조성능에 미치는 영향)

  • Shim, Chang-Su;Yoon, Jae-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.15-26
    • /
    • 2010
  • Quasi-static tests were conducted to evaluate structural performance of precast piers prestressed by bonded prestressing steels. Combinations of prestressing bars and normal reinforcing bars, embedded steel tubes and prestressing strands were used as continuous steels crossing the joints of a precast pier. Main design parameters were steel ratio, magnitude of prestress force, and section details. Flexural strength and energy dissipation capacity of precast columns with higher steel ratio showed better performance due to continuous steels after opening of the joints. Precast piers with embedded members showed stable behavior after reaching maximum loads resulting in higher displacement ductility and energy dissipation capacity increased as the introduced prestress increased. Self-centering behavior at early stages and stress increase of confining reinforcements were observed from highly prestressed columns. Combination of prestressing steels and normal reinforcing bars should be used in design to prevent rapid strength degradation after reaching the maximum load.

An Experimental Study on the Behavior of the Perforated Rib Connector with Shearing Bars (전단구속철근을 배치한 유공강판 전단연결재에 관한 실험적 연구)

  • Kim, Sung-Chil;Kim, Young-Ho;Yu, Sung-Kun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.175-182
    • /
    • 2006
  • In the design of composite structures, shear connectors such as headed stud, channel, perforated plate, etc, are commonly used to transfer longitudinal shear forces across the steel-concrete interface. Many researches have been conducted to improve the characteristics of different types of shear connector. This paper presents the results of 11 push-out tests performed on the new perforated rib connectors with shearing bars embedded in concrete slab under static loads. The results obtained from these tests are as following : 1) The bearing plate welded on both sides of perforated rib plate improves the stiffness and strength. 2) The capacity of perforated connectors is influenced primarily by the transverse reinforcements and shearing bars.

Seismic Performane Evaluation of Flat Plate System Considering Column Aspect Ratio (무량판 구조시스템 접합부의 기둥 형상비에 따른 내진 성능 평가)

  • Lee, Hyun-Ho;Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.74-80
    • /
    • 2008
  • This paper evaluates seismic capacities of slab-column joints in flat plate system which has columns with various aspect ratio as experimental parameters. Continuous - bended shear reinforcements were applied for the prevention of punching shear failure in this study. The specimens of FIS1-05, FIS1-10, and FIS1-20 have the aspect ratio of 0.5, 1.0, and 2.0 respectively. Static lateral force was applied to the specimens in a horizontal direction and vertical load was applied by constant gravity load ratio. The test results were evaluated by lateral displacement and strength of slab-column joint. Consequently, the lateral resisting capacity of rectangular type column such as FIS1-05, FIS1-20 is superior to the square type column such as FIS1-10.

Structural Reinforcement Methods and Structural Safety Analysis for the Elevated Eaves Height 1-2W Type Plastic Greenhouse (측고를 높인 1-2W형 비닐하우스의 구조안전성 분석 및 구조보강 방법)

  • Ryu, Hee-Ryong;Yu, In-Ho;Cho, Myeong-Whan;Um, Yeong-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.192-199
    • /
    • 2009
  • This study was conducted to find proper structural reinforcement methods for the 4.5m-high (eaves height) 1-2W type plastic greenhouse. 3D finite element analysis was used to analyze the steel-tube structure. The 4.5m-high 1-2W type plastic greenhouse was modified by welding 1.5m-long steel-pipes into a 3.0m-tall columns of the standard 1-2W type plastic greenhouse. This remodeling method is widely used in Korea with farmer's discretion to increase the production when they grow paprika. But it is not based on the quantitative structural analysis. The proposed reinforcement methods were proved to stand against the design wind velocity of $40m{\cdot}s^{-1}$ and snow depth of 40cm. It strongly implies that the cross beam between side columns and wind resistance walls, and the lattice type cross beam should be good reinforcements to improve the structural safety of the elevated eaves height plastic greenhouse.

Evaluation of Tensile Material Properties and Confined Performance of GFRP Composite Due to Temperature Elevation (콘크리트 횡구속용 GFRP 보강재의 온도변화에 따른 인장 재료특성 및 구속성능 평가)

  • Jung, Woo-Young;Kim, Jin-Sup;Kwon, Min-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3562-3569
    • /
    • 2013
  • The performance of concrete structure decreases with change in time and the external environment. In order to reinforce the structure, the research about new material development and application of newly developed materials are widely conducted. In the case of composite FRP, it received good attention in the academia due to its high intensity-weight ratio, excellent corrosion resistency as well as good workability. When applying at the construction field, however, the utilization of FRP did not increase as much due to lack of reliability and design standard. Current study investigated the material characteristics during the temperature change at high temperature and the structural behavior from restraint effect for GFRP reinforcing materials. Two experimental variables were set in this study: GFRP reinforcements due to tensile properties of temperature and restraint compression effects. Three concrete specimen were selected for each set temperatures. For this reason, as a variable to experiment with the effects confined compression concrete members value and tensile properties with temperature reinforcement GFRP, experiment produced three pieces each for each set temperature, the concrete specimen, which is confined in the GFRP was selected each I did. For the temperature change during the experiment, the concrete specimen were mounted in order to expose to experimental high temperature for certain period of time. For compression performance evaluation, reinforcement effect from horizontal constraint of the fiber were measured using an Universal Material Testing Machine (UTM). Finally, this study revealed that the binding characteristics of GFRP materials from temperature change decreased. Also, this study showed that the maximum compression intensity decreased as the temperature increased up to $150^{\circ}C$ in the constraints ability of the GFRP reinforcements during the horizontal constraint of concrete.

Shear Strength Prediction of FRP RC Baem without Shear Reinforcements (전단 보강이 없는 FRP RC보의 전단강도 예측)

  • Lee, Jae-Hoon;Shin, Sung-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.313-324
    • /
    • 2010
  • There are many problems in application of FRP reinforcing bars as shear reinforcement, since bending of FRP bars is not a feasible process on construction site. Even though FRP bars can be manufactured in bent shape, they have lower strength at bent location. However, there are no serious problems to use FRP bars as flexural reinforcement. Plates or slabs like bridge decks, in general, do not need shear reinforcements. These types of members with FRP flexural reinforcement have lower shear strength than those with conventional steel flexural reinforcement. However, reliable process or equation for shear strength estimation of FRP reinforced concrete without shear reinforcement are not established, yet. In this study, predicted shear strength obtained from available design equations and assessment equations are compared with 211 experimental results. The results showed that among the current design codes, the Architectural Institute of Japan (AIJ) and the Institution of Structural Engineers (ISE) provided the best estimation. ACI 440.1R-06 provided conservative results with degree of dispersion similar to that of ISE. In addition, regression analysis on the collected experimental results was conducted to develop regression models. As a result, a new reliable shear strength equation was proposed.