• Title/Summary/Keyword: structural material.

Search Result 6,419, Processing Time 0.033 seconds

Numerical Prediction of elastic Material Properties of Composites by A Constrained Nonlinear Optimization Method (구속적 비선형 최적화에 의한 합성재료 탄성물성치의 수치적 예측)

  • 신수봉;고현무
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.225-232
    • /
    • 1997
  • Material properties of a new composite composed of components with known material properties are usually investigated through experiments. Elastic modulus and Poisson's ratio are measured at various volume fractions of mixed components and utilized as the base information on an analytical model for predicting the mechanical behaviors of a structure constructed by the composite. Elastic material properties of a composite at various volume fractions are numerically estimated by minimizing the error between the static displacements computed from a model for the composite and those computed from a model of homogeneous and isotropic material. A finite element model for a composite is proposed to distribute different types of material components easily into the model depending on the volume fraction. Then, the material properties of a composite filled with solid mircospheres are predicted numerically through a sample study and the estimated results are compared with experimental results and some theoretical equations.

  • PDF

Structural Assessment of the Optimal Section Shape of FRP Based Stiffeners (FRP 보강재의 최적 단면 형상 결정 및 평가에 관한 연구)

  • Jeong, Han-Koo;Nho, In-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.435-444
    • /
    • 2011
  • This paper deals with the structural assessment of metallic and non-metallic stiffened/monocoque plated marine structures under a lateral pressure load to identify appropriate combination of material and section configuration, especially at the preliminary marine structural design stage. A generic rectangular plated structure is exemplified from the metallic superstructure of a marine vessel and its structural topology is varied for the structural assessment. In total 13 different structural topologies are proposed and assessed using appropriate elastic solutions in conjunction with a set of stress and deflection limits obtained from practice. The geometry dimensions and weights of the structural topologies are calculated, and subsequently, the costs of the materials used in the structural topologies are reviewed to discuss the cost-effectiveness of the materials. Finally, conclusions are made with the aim of suggesting suitable structural topology for the marine structural member considered in this paper.

A Study on the Nonlinear Analysis of Containment Building in Korea Standard Nuclear Power Plant (한국형 원전 격납건물의 비선형해석에 관한 연구)

  • Lee, Hong-Pyo;Choun, Young-Sun;Lee, Sang-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.353-364
    • /
    • 2007
  • In this paper, a nonlinear finite element analysis program NUCAS, which has been developed for assessment of ultimate pressure capacity and failure mode for nuclear containment building is described. Degenerated shell element with assumed strain method and low-order solid element with enhanced assumed strain method is adapted to microscopic material and elasto-plastic material model, respectively. Finally, the performance of the developed program is tested and demonstrated with several examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.

Cryogenic fracture behaviors and polarization characteristics according to sensitizing heat treatment on structural material of the nuclear fusion reactor (핵 융합로 구조재료의 예민화 열처리에 따른 극저온 파괴거동 및 분극특성)

  • Kwon, Il-Hyun;Chung, Se-Hi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.311-320
    • /
    • 1998
  • The cryogenic fracture behaviors of austenitic stainless steel HN2 developed for nuclear fusion reactor were evaluated quantitatively by using the small punch(SP) test. The electrochemical polarization test was applied to study thermal aging degradation of HN2 steel. The X-ray diffraction(XRD) analysis was conducted to detect carbides and nitrides precipitated on the grain boundary of the heat treated HN2 steel. The mechanical properties of the HN2 steel significantly decreased with increasing time and temperature of heat treatment or with decreasing testing temperature. The integrated charge(Q) obtained from electrochemical polarization test showed a good correlation with the SP energy(ESP) obtained by means of SP tests. From the results observed in the x-ray diffraction and anodic polarization curve, it was known that the material the grain boundary. Combining SP test and electrochemical polarization test, it could be useful tools to non-destructively evaluate the cryogenic fracture behaviors and the aging degradation for cryogenic structural material.

A Study on the Spatial Characteristics in the Tectonic of the Barcelona Pavilion (바로셀로나 파빌리온의 구축적 공간 특성에 관한 연구)

  • 양재혁
    • Korean Institute of Interior Design Journal
    • /
    • no.33
    • /
    • pp.19-26
    • /
    • 2002
  • This study analyzed the characteristics of spatial expression in the Barcelona Pavilion to be based on tectonics. Mies pointed out the image of materiality about the material rather than the process of tectonics using the material, and he also expressed demateriality in the image of each material through the reflection. To be liberated from structural matters, the wall has been introduced. He intended to show the design plan as the independent structural system, however, the wall actually seems to be supporting the roof that shows rather clearly self-contradictory because of the expression of materiality in the material. In terms of architectural elements; wall, roof, column, floor, and so forth, tectonic expression and abstract aesthetics stands face to face, because of hiding the productional process and transforming to line and surface in the image of materiality. The interior of the glass wall seems fairly closed space from the exterior, because materiality and reflection of materials of columns and podium. The character of experiential space is inconsistent and fragmentary because of the splendid images from maternality and reflection on the wall, and collision with the reality and the image the wall reflects, even though the geometrical space of the Pavilion's plan has the mutual penetrability and organic character.

Dynamic Response Analysis of Rotating Composite-VEM Thin-Walled Beams Incorporating Viscoelastic Materials in the Time Domain

  • Na Sung-Soo;Park Jae-Yong;Park Chul-H.;Kwak Moon-K.;Shim Jae-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1139-1148
    • /
    • 2006
  • This paper addresses the analytical modeling and dynamic response of the advanced composite rotating blade modeled as thin-walled beams and incorporating viscoelastic material. The blade model incorporates non-classical features such as anisotropy, transverse shear, rotary inertia and includes the centrifugal and coriolis force fields. The dual technology including structural tailoring and passive damping technology is implemented in order to enhance the vibrational characteristics of the blade. Whereas structural tailoring methodology uses the directionality properties of advanced composite materials, the passive material technology exploits the damping capabilities of viscoelastic material (VEM) embedded into the host structure. The VEM layer damping treatment is modeled by using the Golla-Hughes-McTavish (GHM) method, which is employed to account for the frequency-dependent characteristics of the VEM. The case of VEM spread over the entire span of the structure is considered. The displayed numerical results provide a comprehensive picture of the synergistic implications of both techniques, namely, the tailoring and damping technology on the dynamic response of a rotating thin-walled b ε am exposed to external time-dependent excitations.

A Study on Development of the Controlled Low-Strength and High-Flowable Filling Material and Application of the Backfilling in Cavities behind the Old Tunnel Lining (고유동 충전재의 개발과 노후 터널의 배면공동 뒤채움에 관한 연구)

  • Ma, Sang-Joon;Seo, Kyoung-Won;Bae, Gyu-Jin;Ahn, Sang-Cheol;Lim, Kyung-Ha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.177-184
    • /
    • 2002
  • The most tunnel damage such as cracks or leakage which exist in tunnel lining commonly, is caused by the cavities where exist behind the tunnel lining, through the tunnel safety inspections. These cavities were analysed to affect a stability of a running-tunnel seriously. This study is on the development of the controlled low-strength and flowable filling material which is able to apply to the cavity behind the tunnel lining. The major materials of backfilling developed are a crushed sand and a stone-dust which exists as a cake-state and is a by-product obtained in the producting process of aggregate. It is conformed with the design standard to the physical characteristics of backfilling. The backfilling material developed is designed to reduce the fair amount of cement. According to the designed compound ratio, it is carried out the laboratory tests such as a compressive strength and a chemical analyses and is applied to dilapidated old tunnel for an application assessment.

Field Application of Low Heat Concrete Using Strontium Hydroxide Based Latent Heat Material (스트론튬계 잠열재를 사용한 저발열 콘크리트의 현장적용 평가)

  • Khil, Bae Su;Yun, Hyun Do;Jeong, Ok Ran
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.218-226
    • /
    • 2011
  • Low heat concrete using strontium hydroxide based latent heat material was manufactured in ready-mixed concrete batcher plant and its fundamental properties were tested. As a result of B/P test, its applicability to the construction site was verified. After B/P test, low heat concrete using strontium hydroxide based latent heat material was applied to the real construction site of bridge footing. Through the analysis and the actual measurement of the hydration heat of the concrete footing, the reduction effect of hydration heat and thermal crack was confirmed.

Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories

  • Yahia, Sihame Ait;Atmane, Hassen Ait;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1143-1165
    • /
    • 2015
  • In this work, various higher-order shear deformation plate theories for wave propagation in functionally graded plates are developed. Due to porosities, possibly occurring inside functionally graded materials (FGMs) during fabrication, it is therefore necessary to consider the wave propagation in plates having porosities in this study. The developed refined plate theories have fewer number of unknowns and equations of motion than the first-order shear deformation theory, but accounts for the transverse shear deformation effects without requiring shear correction factors. The rule of mixture is modified to describe and approximate material properties of the functionally graded plates with porosity phases. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle. The analytic dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions and porosity volume fraction on wave propagation of functionally graded plate are discussed in detail. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

Analysis of Particle Rearrangement during Sintering by Micro Focus Computed Tomography $({\mu}CT)$

  • Nothe, M.;Schulze, M.;Grupp, R.;Kieback, B.;Haibel, A.;Banhart, J.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.808-809
    • /
    • 2006
  • The decrease of the distance between particle centers due to the growth of the sinter necks can be explained by the well known two-particle model. Unfortunately this model fails to provide a comprehensive description of the processes for 3D specimens. Furthermore, there is a significant discrepancy between the calculated and the measured shrinkage because particle rearrangements are not considered. Only the recently developed analysis of the particle movements inside of 3D specimens using micro focus computed tomography $({\mu}CT)$, combined with photogrammetric image analysis, can deliver the necessary experimental data to improve existing sintering theories. In this work, ${\mu}CT$ analysis was applied to spherical copper powders. Based on photogrammetric image analysis, it is possible to determine the positions of all particle centers for tracking the particles over the entire sintering process and to follow the formation and breaking of the particle bonds. In this paper, we present an in-depth analysis of the obtained data. In the future, high resolution synchrotron radiation tomography will be utilized to obtain in-situ data and images of higher resolution.

  • PDF